361 research outputs found

    Risk-sensitive foraging and the evolution of cooperative breeding and reproductive skew

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group formation and food sharing in animals may reduce variance in resource supply to breeding individuals. For some species it has thus been interpreted as a mechanism of risk avoidance. However, in many groups reproduction is extremely skewed. In such groups resources are not shared equally among the members and inter-individual variance in resource supply may be extreme. The potential consequences of this aspect of group living have not attained much attention in the context of risk sensitive foraging.</p> <p>Results</p> <p>We develop a model of individually foraging animals that share resources for reproduction. The model allows analyzing how mean foraging success, inter-individual variance of foraging success, and the cost of reproduction and offspring raising influence the benefit of group formation and resource sharing. Our model shows that the effects are diametrically opposed in egalitarian groups versus groups with high reproductive skew. For individuals in egalitarian groups the relative benefit of group formation increases under conditions of increasing variance in foraging success and decreasing cost of reproduction. On the other hand individuals in groups with high skew will profit from group formation under conditions of decreasing variance in individual foraging success and increasing cost of reproduction.</p> <p>Conclusion</p> <p>The model clearly demonstrates that reproductive skew qualitatively changes the influence of food sharing on the reproductive output of groups. It shows that the individual benefits of variance reduction in egalitarian groups and variance enhancement in groups with reproductive skew depend critically on ecological and life-history parameters. Our model of risk-sensitive foraging thus allows comparing animal societies as different as spiders and birds in a single framework.</p

    Evolution of dispersal distance: Maternal investment leads to bimodal dispersal kernels

    Get PDF
    Since dispersal research has mainly focused on the evolutionary dynamics of dispersal rates, it remains unclear what shape evolutionarily stable dispersal kernels have. Yet, detailed knowledge about dispersal kernels, quantifying the statistical distribution of dispersal distances, is of pivotal importance for understanding biogeographic diversity, predicting species invasions, and explaining range shifts. We therefore examine the evolution of dispersal kernels in an individual-based model of a population of sessile organisms, such as trees or corals. Specifically, we analyze the influence of three potentially important factors on the shape of dispersal kernels: distance-dependent competition, distance-dependent dispersal costs, and maternal investment reducing an offspring's dispersal costs through a trade-off with maternal fecundity. We find that without maternal investment, competition and dispersal costs lead to unimodal kernels, with increasing dispersal costs reducing the kernel's width and tail weight. Unexpectedly, maternal investment inverts this effect: kernels become bimodal at high dispersal costs. This increases a kernel's width and tail weight, and thus the fraction of long-distance dispersers, at the expense of simultaneously increasing the fraction of non-dispersers. We demonstrate the qualitative robustness of our results against variations in the tested parameter combinations

    Sex-specific spatio-temporal variability in reproductive success promotes the evolution of sex-biased dispersal

    Get PDF
    Abstract: Inbreeding depression, asymmetries in costs or benefits of dispersal, and the mating system have been identified as potential factors underlying the evolution of sex-biased dispersal. We use individual-based simulations to explore how the mating system and demographic stochasticity influence the evolution of sex-specific dispersal in a metapopulation with females competing over breeding sites, and males over mating opportunities. Comparison of simulation results for random mating with those for a harem system (locally, a single male sires all offspring) reveal that even extreme variance in local male reproductive success (extreme male competition) does not induce male-biased dispersal. The latter evolves if the between-parch variance in reproductive success is larger for males than females. This can emerge due to demographic stochasticity if the habitat patches are small. More generally, members of a group of individuals experiencing higher spatio-temporal variance in fitness expectations may evolve to disperse with greater probability than others

    Male-killing endosymbionts: influence of environmental conditions on persistence of host metapopulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because of the reproductive manipulation, we expect them to have an effect on the evolution of host dispersal rates. In addition, male killing endosymbionts are expected to approach fixation when fitness of infected individuals is larger than that of uninfected ones and when transmission from mother to offspring is nearly perfect. They then vanish as the host population crashes. High observed infection rates and among-population variation in natural systems can consequently not be explained if defense mechanisms are absent and when transmission efficiency is perfect.</p> <p>Results</p> <p>By simulating the host-endosymbiont dynamics in an individual-based metapopulation model we show that male killing endosymbionts increase host dispersal rates. No fitness compensations were built into the model for male killing endosymbionts, but they spread as a group beneficial trait. Host and parasite populations face extinction under panmictic conditions, i.e. conditions that favor the evolution of high dispersal in hosts. On the other hand, deterministic 'curing' (only parasite goes extinct) can occur under conditions of low dispersal, e.g. under low environmental stochasticity and high dispersal mortality. However, high and stable infection rates can be maintained in metapopulations over a considerable spectrum of conditions favoring intermediate levels of dispersal in the host.</p> <p>Conclusion</p> <p>Male killing endosymbionts without explicit fitness compensation spread as a group selected trait into a metapopulation. Emergent feedbacks through increased evolutionary stable dispersal rates provide an alternative explanation for both, the high male-killing endosymbiont infection rates and the high among-population variation in local infection rates reported for some natural systems.</p

    Sex-specific dispersal and evolutionary rescue in metapopulations infected by male killing endosymbionts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because the resulting change in sex ratio is expected to affect the evolution of sex-specific dispersal, we investigated under which environmental conditions strong sex-biased dispersal would emerge, and how this would affect host and endosymbiont metapopulation persistence.</p> <p>Results</p> <p>We simulated host-endosymbiont metapopulation dynamics in an individual-based model, in which dispersal rates are allowed to evolve independently for the two sexes. Prominent male-biased dispersal emerges under conditions of low environmental stochasticity and high dispersal mortality. By applying a reshuffling algorithm, we show that kin-competition is a major driver of this evolutionary pattern because of the high within-population relatedness of males compared to those of females. Moreover, the evolution of sex-specific dispersal rescues metapopulations from extinction by (i) reducing endosymbiont fixation rates and (ii) by enhancing the extinction of endosymbionts within metapopulations that are characterized by low environmental stochasticity.</p> <p>Conclusion</p> <p>Male killing endosymbionts induce the evolution of sex-specific dispersal, with prominent male-biased dispersal under conditions of low environmental stochasticity and high dispersal mortality. This male-biased dispersal emerges from stronger kin-competition in males compared to females and induces an evolutionary rescue mechanism.</p

    Adaptive dynamic resource allocation in annual eusocial insects: Environmental variation will not necessarily promote graded control

    Get PDF
    Background: According to the classical model of Macevicz and Oster, annual eusocial insects should show a clear dichotomous "bang-bang" strategy of resource allocation; colony fitness is maximised when a period of pure colony growth (exclusive production of workers) is followed by a single reproductive period characterised by the exclusive production of sexuals. However, in several species graded investment strategies with a simultaneous production of workers and sexuals have been observed. Such deviations from the "bang-bang" strategy are usually interpreted as an adaptive (bet-hedging) response to environmental fluctuations such as variation in season length or food availability. To generate predictions about the optimal investment pattern of insect colonies in fluctuating environments, we slightly modified Macevicz and Oster's classical model of annual colony dynamics and used a dynamic programming approach nested into a recurrence procedure for the solution of the stochastic optimal control problem. Results: 1) The optimal switching time between pure colony growth and the exclusive production of sexuals decreases with increasing environmental variance. 2) Yet, for reasonable levels of environmental fluctuations no deviation from the typical bang-bang strategy is predicted. 3) Model calculations for the halictid bee Lasioglossum malachurum reveal that bet-hedging is not likely to be the reason for the graded allocation into sexuals versus workers observed in this species. 4) When environmental variance reaches a critical level our model predicts an abrupt change from dichotomous behaviour to graded allocation strategies, but the transition between colony growth and production of sexuals is not necessarily monotonic. Both, the critical level of environmental variance as well as the characteristic pattern of resource allocation strongly depend on the type of function used to describe environmental fluctuations. Conclusion: Up to now bet-hedging as an evolutionary response to variation in season length has been the main argument to explain field observations of graded resource allocation in annual eusocial insect species. However, our model shows that the effect of moderate fluctuations of environmental conditions does not select for deviation from the classical bang-bang strategy and that the evolution of graded allocation strategies can be triggered only by extreme fluctuations. Detailed quantitative observations on resource allocation in eusocial insects are needed to analyse the relevance of alternative explanations, e.g. logistic colony growth or reproductive conflict between queen and workers, for the evolution of graded allocation strategies

    Habitat suitability models for the conservation of thermophilic grasshoppers and bush crickets—simple or complex?

    Get PDF
    One goal of conservation biology is the assessment of effects of land use change on species distribution. One approach for identifying the factors, which determine habitat suitability for a species are statistical habitat distribution models. These models are quantitative and can be used for predictions in management scenarios. However, they often have one major shortcoming, which is their complexity. This means that they need several, often costly-to-determine parameters for predictions of species occurrence. We first used habitat suitability models to investigate and determine habitat preferences of three different Orthoptera species. Second, we compared the predictive powers of simple habitat suitability models considering only the ‘habitat type' as predictor with more complex models taking different habitat factors into account. We found that the habitat type is the most reliable and robust factor, which determines the occurrence of the species studied. Thus, analyses of habitat suitability can easily be carried out on the basis of existing vegetation maps for the conservation of the three species under study. Our results can serve as a basis for the estimation of spatio-temporal distribution and survival probabilities of the species studied and might also be valuable for other species living in dry grassland

    Leadership, values and communication: a cross-cultural investigation of the extended full-range of leadership behaviors

    Get PDF
    This dissertation investigates the extended full-range of leadership model – including laissez-faire, transactional, transformational, and instrumental leadership – in 14 cultures. Cross-cultural leadership has increasingly attracted the attention of practitioners as well as scholars in recent years due to important challenges that international firms are facing on the global market. The aim of this dissertation is, thus, to examine cultural impacts on leader behaviors in relation to the leadership styles of the extended full-range of leadership framework to provide a comprehensive model of leadership behaviors, underlying processes (mediators), and conditions (moderators) in an intercultural context. For this purpose, three complementary and concerted empirical studies were carried out. The first study simultaneously explores all of the extended full-range of leadership styles (laissez-faire, transactional, transformational, and instrumental leadership) to identify which of these leader behaviors are most effective to enhance job satisfaction and affective commitment across cultures. The second study sheds light on the influence of cultural and individual openness values as moderators in order to investigate under which conditions the influence of transformational and instrumental leadership is particularly strong. The third study looks at the leader’s communicator style as a mediator to investigate the underlying processes of transformational and instrumental leadership in greater detail. In summary, this dissertation represents an important step towards a more robust understanding of the effectiveness of the extended full-range of leader behaviors across cultures. It contributes to the leadership literature in two key ways. On the one hand, it scrutinizes the extended full-range of leadership model – including instrumental leadership – in a wide range of different cultures. On the other hand, it expands this model in the sense of an input-process-output model which additionally includes boundary conditions. As such, this dissertation helps to reveal differentiated insights on underlying processes and conditions that shape the micro-level dynamics of leadership processes in different cultures. The main result of this dissertation is that – in line with theoretical expectations – transformational and instrumental leadership were the best predictors for job satisfaction and affective commitment across cultures. Moreover, although culture did not impact the direct relationships between transformational and instrumental leadership and job attitudes, more fine-grained analyses showed that culture had an influence on micro-processes of leadership

    The evolution of activity breaks in the nest cycle of annual eusocial bees: a model of delayed exponential growth

    Get PDF
    BACKGROUND: Social insects show considerable variability not only in social organisation but also in the temporal pattern of nest cycles. In annual eusocial sweat bees, nest cycles typically consist of a sequence of distinct phases of activity (queen or workers collect food, construct, and provision brood cells) and inactivity (nest is closed). Since the flight season is limited to the time of the year with sufficiently high temperatures and resource availability, every break reduces the potential for foraging and, thus, the productivity of a colony. This apparent waste of time has not gained much attention. RESULTS: We present a model that explains the evolution of activity breaks by assuming differential mortality during active and inactive phases and a limited rate of development of larvae, both reasonable assumptions. The model predicts a systematic temporal structure of breaks at certain times in the season which increase the fitness of a colony. The predicted pattern of these breaks is in excellent accordance with field data on the nest cycle of the halictid Lasioglossum malachurum. CONCLUSION: Activity breaks are a counter-intuitive outcome of varying mortality rates that maximise the reproductive output of primitively eusocial nests
    corecore