142 research outputs found

    Evolutionary Dead End in the Galápagos: Divergence of Sexual Signals in the Rarest of Darwin's Finches

    Get PDF
    Understanding the mechanisms underlying speciation remains a challenge in evolutionary biology. The adaptive radiation of Darwin's finches is a prime example of species formation, and their study has revealed many important insights into evolutionary processes. Here, we report striking differences in mating signals (songs), morphology and genetics between the two remnant populations of Darwin's mangrove finch Camarhynchus heliobates, one of the rarest species in the world. We also show that territorial males exhibited strong discrimination of sexual signals by locality: in response to foreign songs, males responded weaker than to songs from their own population. Female responses were infrequent and weak but gave approximately similar results. Our findings not only suggest speciation in the mangrove finch, thereby providing strong support for the central role of sexual signals during speciation, but they have also implications for the conservation of this iconic bird. If speciation is complete, the eastern species will face imminent extinction, because it has a population size of only 5–10 individuals

    Non-Breeding Song Rate Reflects Nutritional Condition Rather than Body Condition

    Get PDF
    Numerous studies have focused on song in songbirds as a signal involved in mate choice and intrasexual competition. It is expected that song traits such as song rate reflect individual quality by being dependent on energetic state or condition. While seasonal variation in bird song (i.e., breeding versus non-breeding song) and its neural substrate have received a fair amount of attention, the function and information content of song outside the breeding season is generally much less understood. Furthermore, typically only measures of condition involving body mass are examined with respect to song rate. Studies investigating a potential relationship between song rate and other indicators of condition, such as physiological measures of nutritional condition, are scant. In this study, we examined whether non-breeding song rate in male European starlings (Sturnus vulgaris) reflects plasma metabolite levels (high-density lipoproteins (HDL), albumin, triglycerides and cholesterol) and/or body mass. Song rate was significantly positively related to a principal component representing primarily HDL, albumin and cholesterol (and to a lesser degree plasma triglyceride levels). There was only a trend toward a significant positive correlation between song rate and body mass, and no significant correlation between body mass and the abovementioned principal component. Therefore, our results indicate that nutritional condition and body mass represent different aspects of condition, and that song rate reflects nutritional rather than body condition. Additionally, we also found that intra-individual song rate consistency (though not song rate itself) was significantly positively related to lutein levels, but not to body mass or nutritional condition. Together our results suggest that the relation between physiological measures of nutritional condition and song rate, as well as other signals, may present an interesting line of future research, both inside and outside the breeding season

    Oceanographic barriers, divergence, and admixture : phylogeography and taxonomy of two putative subspecies of short-finned pilot whale

    Get PDF
    Funding:Commander, U.S. Pacific Fleet Environmental Readiness Division and NMFS Pacific Islands Fisheries Science Center; NMFS West Coast Region; Scripps Institution of Oceanography Edna Bailey Sussman Research Fellowship; and Woods Hole Oceanographic Institution.Genomic phylogeography plays an important role in describing evolutionary processes and their geographic, ecological, or cultural drivers. These drivers are often poorly understood in marine environments, which have fewer obvious barriers to mixing than terrestrial environments. Taxonomic uncertainty of some taxa (e.g., cetaceans), due to the difficulty in obtaining morphological data, can hamper our understanding of these processes. One such taxon, the short‐finned pilot whale, is recognized as a single global species but includes at least two distinct morphological forms described from stranding and drive hunting in Japan, the “Naisa” and “Shiho” forms. Using samples (n = 735) collected throughout their global range, we examine phylogeographic patterns of divergence by comparing mitogenomes and nuclear SNP loci. Our results suggest three types within the species: an Atlantic Ocean type, a western/central Pacific and Indian Ocean (Naisa) type, and an eastern Pacific Ocean and northern Japan (Shiho) type. mtDNA control region differentiation indicates these three types form two subspecies, separated by the East Pacific Barrier: Shiho short‐finned pilot whale, in the eastern Pacific Ocean and northern Japan, and Naisa short‐finned pilot whale, throughout the remainder of the species' distribution. Our data further indicate two diverging populations within the Naisa subspecies, in the Atlantic Ocean and western/central Pacific and Indian Oceans, separated by the Benguela Barrier off South Africa. This study reveals a process of divergence and speciation within a globally‐distributed, mobile marine predator, and indicates the importance of the East Pacific Barrier to this evolutionary process.PostprintPeer reviewe

    Genetic Evidence for Hybrid Trait Speciation in Heliconius Butterflies

    Get PDF
    Homoploid hybrid speciation is the formation of a new hybrid species without change in chromosome number. So far, there has been a lack of direct molecular evidence for hybridization generating novel traits directly involved in animal speciation. Heliconius butterflies exhibit bright aposematic color patterns that also act as cues in assortative mating. Heliconius heurippa has been proposed as a hybrid species, and its color pattern can be recreated by introgression of the H. m. melpomene red band into the genetic background of the yellow banded H. cydno cordula. This hybrid color pattern is also involved in mate choice and leads to reproductive isolation between H. heurippa and its close relatives. Here, we provide molecular evidence for adaptive introgression by sequencing genes across the Heliconius red band locus and comparing them to unlinked wing patterning genes in H. melpomene, H. cydno, and H. heurippa. 670 SNPs distributed among 29 unlinked coding genes (25,847bp) showed H. heurippa was related to H. c. cordula or the three species were intermixed. In contrast, among 344 SNPs distributed among 13 genes in the red band region (18,629bp), most showed H. heurippa related with H. c. cordula, but a block of around 6,5kb located in the 3′ of a putative kinesin gene grouped H. heurippa with H. m. melpomene, supporting the hybrid introgression hypothesis. Genealogical reconstruction showed that this introgression occurred after divergence of the parental species, perhaps around 0.43Mya. Expression of the kinesin gene is spatially restricted to the distal region of the forewing, suggesting a mechanism for pattern regulation. This gene therefore constitutes the first molecular evidence for adaptive introgression during hybrid speciation and is the first clear candidate for a Heliconius wing patterning locus

    Computer Simulation of Cellular Patterning Within the Drosophila Pupal Eye

    Get PDF
    We present a computer simulation and associated experimental validation of assembly of glial-like support cells into the interweaving hexagonal lattice that spans the Drosophila pupal eye. This process of cell movements organizes the ommatidial array into a functional pattern. Unlike earlier simulations that focused on the arrangements of cells within individual ommatidia, here we examine the local movements that lead to large-scale organization of the emerging eye field. Simulations based on our experimental observations of cell adhesion, cell death, and cell movement successfully patterned a tracing of an emerging wild-type pupal eye. Surprisingly, altering cell adhesion had only a mild effect on patterning, contradicting our previous hypothesis that the patterning was primarily the result of preferential adhesion between IRM-class surface proteins. Instead, our simulations highlighted the importance of programmed cell death (PCD) as well as a previously unappreciated variable: the expansion of cells' apical surface areas, which promoted rearrangement of neighboring cells. We tested this prediction experimentally by preventing expansion in the apical area of individual cells: patterning was disrupted in a manner predicted by our simulations. Our work demonstrates the value of combining computer simulation with in vivo experiments to uncover novel mechanisms that are perpetuated throughout the eye field. It also demonstrates the utility of the Glazier–Graner–Hogeweg model (GGH) for modeling the links between local cellular interactions and emergent properties of developing epithelia as well as predicting unanticipated results in vivo

    Atypical birdsong and artificial languages provide insights into how communication systems are shaped by learning, use and transmission

    Get PDF
    In this article, I argue that a comparative approach focusing on the cognitive capacities and behavioral mechanisms that underlie vocal learning in songbirds and humans can provide valuable insights into the evolutionary origins of language. The experimental approaches I discuss use abnormal song and atypical linguistic input to study the processes of individual learning, social interaction, and cultural transmission. Atypical input places increased learning and communicative pressure on learners, so exploring how they respond to this type of input provides a particularly clear picture of the biases and constraints at work during learning and use. Furthermore, simulating the cultural transmission of these unnatural communication systems in the laboratory informs us about how learning and social biases influence the structure of communication systems in the long run. Findings based on these methods suggest fundamental similarities in the basic social–cognitive mechanisms underlying vocal learning in birds and humans, and continuing research promises insights into the uniquely human mechanisms and into how human cognition and social behavior interact, and ultimately impact on the evolution of language

    Habitat-related birdsong divergence: a multi-level study on the influence of territory density and ambient noise in European blackbirds

    Get PDF
    Song plays an important role in avian communication and acoustic variation is important at both the individual and population level. Habitat-related variation between populations in particular can reflect adaptations to the environment accumulated over generations, but this may not always be the case. In this study, we test whether variation between individuals matches local conditions with respect to noise level and territory density to examine whether short-term flexibility could contribute to song divergence at the population level. We conducted a case study on an urban and forest population of the European blackbird and show divergence at the population level (i.e. across habitats) in blackbird song, anthropogenic noise level and territory density. Unlike in several other species, we found a lack of any correlation at the individual level (i.e. across individuals) between song features and ambient noise. This suggests species-specific causal explanations for noise-dependent song differentiation which are likely associated with variation in song-copying behaviour or feedback constraints related to variable singing styles. On the other hand, we found that at the level of individual territories, temporal features, but not spectral ones, are correlated to territory density and seasonality. This suggests that short-term individual variation can indeed contribute to habitat-dependent divergence at the population level. As this may undermine the potential role for song as a population marker, we conclude that more investigations on individual song flexibility are required for a better understanding of the impact of population-level song divergence on hybridisation and speciation

    De Novo Analysis of Transcriptome Dynamics in the Migratory Locust during the Development of Phase Traits

    Get PDF
    Locusts exhibit remarkable density-dependent phenotype (phase) changes from the solitary to the gregarious, making them one of the most destructive agricultural pests. This phenotype polyphenism arises from a single genome and diverse transcriptomes in different conditions. Here we report a de novo transcriptome for the migratory locust and a comprehensive, representative core gene set. We carried out assembly of 21.5 Gb Illumina reads, generated 72,977 transcripts with N50 2,275 bp and identified 11,490 locust protein-coding genes. Comparative genomics analysis with eight other sequenced insects was carried out to indentify the genomic divergence between hemimetabolous and holometabolous insects for the first time and 18 genes relevant to development was found. We further utilized the quantitative feature of RNA-seq to measure and compare gene expression among libraries. We first discovered how divergence in gene expression between two phases progresses as locusts develop and identified 242 transcripts as candidates for phase marker genes. Together with the detailed analysis of deep sequencing data of the 4th instar, we discovered a phase-dependent divergence of biological investment in the molecular level. Solitary locusts have higher activity in biosynthetic pathways while gregarious locusts show higher activity in environmental interaction, in which genes and pathways associated with regulation of neurotransmitter activities, such as neurotransmitter receptors, synthetase, transporters, and GPCR signaling pathways, are strongly involved. Our study, as the largest de novo transcriptome to date, with optimization of sequencing and assembly strategy, can further facilitate the application of de novo transcriptome. The locust transcriptome enriches genetic resources for hemimetabolous insects and our understanding of the origin of insect metamorphosis. Most importantly, we identified genes and pathways that might be involved in locust development and phase change, and may thus benefit pest management
    corecore