170 research outputs found

    Development and validation of an instrument to measure health-related out-of-pocket costs : the cost for patients questionnaire

    Get PDF
    Objective: The growth of healthcare spending is a major concern for insurers and governments but also for patients whose health problems may result in costs going beyond direct medical costs. To develop a comprehensive tool to measure direct and indirect costs of a health condition for patients and their families to various outpatient contexts. Methods: We conducted a content and face validation including results of a systematic review to identify the items related to direct and indirect costs for patients or their families and an online Delphi to determine the cost items to retain. We conducted a pilot test-retest with 18 naive participants and analyzed data calculating intraclass correlation and kappa coefficients. Results: An initial list of 34 items was established from the systematic review. Each round of the Delphi panel incorporated feedback from the previous round until a strong consensus was achieved. After 4 rounds of the Delphi to reach consensus on items to be included and wording, the questionnaire had a total of 32 cost items. For the test-retest, kappa coefficients ranged from 20.11 to 1.00 (median = 0.86), and intraclass correlation ranged from 20.02 to 0.99 (median = 0.62). Conclusions: A rigorous process of content and face development was implemented for the Cost for Patients Questionnaire, and this study allowed to set a list of cost elements to be considered from the patient's perspective. Additional research including a test-retest with a larger sample will be part of a subsequent validation strategy

    Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Get PDF
    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period

    Reliability Study of GaN-on-SiC HEMT RF Power Amplifiers

    Get PDF
    The RF power amplifier demonstrators containing each one GaN-on-SiC, HEMT, CHZ015A-QEG, from UMS in SMD quad-flat no-leads package (QFN) were subjected to thermal cycles (TC) and power cycles (PC) and evaluated electrically, thermally and structurally. Two types of solders, Sn63Pb36Ag2 and lead-free SnAgCu (SAC305), and two types of TIM materials, NanoTIM and TgonTM 805, for PCB attachment to the liquid cold plate were tested for thermo-mechanical reliability. Changes in the electrical performance of the devices, namely the reduction of the current saturation value, threshold voltage shift, increase of the leakage current and degradation of the HF performance were observed as a result of an accumulated current stress during PC. No significant changes in the investigated solder or TIM materials were observed

    Reliability Study of GaN-on-SiC HEMT RF Power Amplifiers

    Get PDF
    The RF power amplifier demonstrators containing each one GaN-on-SiC, HEMT, CHZ015A-QEG, from UMS in SMD quad-flat no-leads package (QFN) were subjected to thermal cycles (TC) and power cycles (PC) and evaluated electrically, thermally and structurally. Two types of solders, Sn63Pb36Ag2 and lead-free SnAgCu (SAC305), and two types of TIM materials, NanoTIM and TgonTM 805, for PCB attachment to the liquid cold plate were tested for thermo-mechanical reliability. Changes in the electrical performance of the devices, namely the reduction of the current saturation value, threshold voltage shift, increase of the leakage current and degradation of the HF performance were observed as a result of an accumulated current stress during PC. No significant changes in the investigated solder or TIM materials were observed

    Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    Get PDF
    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam

    Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Get PDF
    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (μ 500 MeV) with an intense laser pulse (a0>10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy >30 MeV
    • …
    corecore