10 research outputs found

    Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanopolymers

    Get PDF
    The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community-based behaviours (i.e., isolation and social distancing), antiviral treatments, and vaccines. Although behaviour-based actions have produced significant benefits and several efficacious vaccines are now available, there is still an urgent need for treatment options. Remdesivir represents the first antiviral drug approved by the Food and Drug Administration for COVID-19 but has several limitations in terms of safety and treatment benefits. There is still a strong request for other effective, safe, and broad-spectrum antiviral systems in light of future emergent coronaviruses. Here, we describe a polymeric nanomaterial derived from l-lysine, with an antiviral activity against SARS-CoV-2 associated with a good safety profile in vitro. Nanoparticles of hyperbranched polylysine, synthesized by l-lysine's thermal polymerization catalyzed by boric acid, effectively inhibit the SARS-CoV-2 replication. The virucidal activity is associated with the charge and dimension of the nanomaterial, favouring the electrostatic interaction with the viral surface being only slightly larger than the virions' dimensions. Low-cost production and easiness of synthesis strongly support the further development of such innovative nanomaterials as a tool for potential treatments of COVID-19 and, in general, as broad-spectrum antivirals. This journal i

    Hindered nucleoside analogs as antiflaviviridae agents

    Get PDF
    Abstract Flaviviridae are an important family of viruses, responsible for widely spread diseases such as dengue and West Nile fever and hepatitis C. Despite the severity of the related diseases, no effective antiviral treatments for infection are available. Following our discovery of adenosine-hindered analogs as potent antiflaviviridae agents, we have continued our investigation on guanosine and inosine derivatives, which were evaluated for activity against BVDV, YFV, DENV, and WNV viruses in cell-based assays. The present study allowed us to identify some newer features that led to improve the antiviral potency (down to the ”M range) and to selectively inhibit BVDV and YFV viruses. The molecular modeling results were consistent with the hypothesis that test analogs act as RNA-dependent RNA polymerase (RdRp) inhibitors by interacting with a surface allosteric binding pocket

    Hindered nucleoside analogs as antiflaviviridae agents

    No full text
    Flaviviridae are an important family of viruses, responsible for widely spread diseases such as dengue and West Nile fever and hepatitis C. Despite the severity of the related diseases, no effective antiviral treatments for infection are available. Following our discovery of adenosine-hindered analogs as potent antiflaviviridae agents, we have continued our investigation on guanosine and inosine derivs., which were evaluated for activity against BVDV, YFV, DENV, and WNV viruses in cell-based assays. The present study allowed us to identify some newer features that led to improve the antiviral potency (down to the microM range) and to selectively inhibit BVDV and YFV viruses. The mol. modeling results were consistent with the hypothesis that test analogs act as RNA-dependent RNA polymerase (RdRp) inhibitors by interacting with a surface allosteric binding pocke

    Synthesis and Evaluation of Bifunctional Aminothiazoles as Antiretrovirals Targeting the HIV-1 Nucleocapsid Protein

    No full text
    Small molecule inhibitors of the HIV-1 nucleocapsid protein (NC) are considered as promising agents in the treatment of HIV/AIDS. In an effort to exploit the privileged 2-amino-4-phenylthiazole moiety in NC inhibition, here we conceived, synthesized, and tested in vitro 18 NC inhibitors (NCIs) bearing a double functionalization. In these NCIs, one part of the molecule is deputed to interact noncovalently with the NC hydrophobic pocket, while the second portion is designed to interact with the N-terminal domain of NC. This binding hypothesis was verified by molecular dynamics simulations, while the linkage between these two pharmacophores was found to enhance antiretroviral activity both on the wild-type virus and on HIV-1 strains with resistance to currently licensed drugs. The two most interesting compounds 6 and 13 showed no cytotoxicity, thus becoming valuable leads for further investigations

    Hindered Nucleoside Analogs (HNA) as Antiflaviviridae Agents

    No full text
    Flaviviridae are an important family of viruses, responsible for widely spread diseases such as dengue and West Nile fever and hepatitis C. Despite the severity of the related diseases, no effective antiviral treatments for infection are available. Following our discovery of adenosine-hindered analogs as potent antiflaviviridae agents, we have continued our investigation on guanosine and inosine derivatives, which were evaluated for activity against BVDV, YFV, DENV, and WNV viruses in cell-based assays. The present study allowed us to identify some newer features that led to improve the antiviral potency (down to the ÎŒM range) and to selectively inhibit BVDV and YFV viruses. The molecular modeling results were consistent with the hypothesis that test analogs act as RNA-dependent RNA polymerase (RdRp) inhibitors by interacting with a surface allosteric binding pocket

    In vitro and clinical studies on the efficacy of alpha-cyclodextrin and hydroxytyrosol against SARS-CoV-2 infection

    No full text
    OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new coronavirus responsible for the current pandemic of coronavirus disease 2019 (COVID-19). This virus attacks cells of the airway epithelium by binding transmembrane angiotensin-converting enzyme 2 (ACE2). Hydroxytyrosol has anti-viral properties. Alpha-cyclodextrin can deplete sphingolipids and phospholipids from cell membranes. The aim of the present experimental study was to evaluate the efficacy of alpha-cyclodextrin and hydroxytyrosol in improving defenses against SARS-CoV-2 infection in in vitro cell models and humans
    corecore