31 research outputs found

    Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    Get PDF
    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement

    Euler analysis comparison with LDV data for an advanced counter-rotation propfan at cruise

    Get PDF
    A fine mesh Euler solution of the F4/A4 unducted fan (UDF) model flowfield is compared with laser Doppler velocimeter (LDV) data taken in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel. The comparison is made primarily at one axial plane downstream of the front rotor where the LDV particle lag errors are reduced. The agreement between measured and predicted velocities in this axial plane is good. The results show that a dense mesh is needed in the centerbody stagnation region to minimize entropy generation that weakens the aft row passage shock. The predicted radial location of the tip vortex downstream of the front rotor agrees well with the experimental results but the strength is overpredicted. With 40 points per chord line, the integrated performance quantities are nearly converged, but more points are needed to resolve passage shocks and flow field details

    Evaluating the Aerodynamic Impact of Circumferentially Grooved Fan Casing Treatments with Integrated Acoustic Liners on a Turbofan Rotor

    Get PDF
    NASA is investigating the potential of integrating acoustic liners into fan cases to reduce fan noise, while maintaining the fan's aerodynamic performance. An experiment was conducted to quantify the aerodynamic impact of circumferentially grooved fan cases with integrated acoustic liners on a 1.5 pressure ratio turbofan rotor. In order to improve the ability to measure small performance changes, fan performance calculations were updated to include real gas effects including the effect of humidity. For all fan cases tested, the measured difference in fan isentropic efficiency was found to be less than the measurement repeatability for a torque-based efficiency calculation ( 0.2%), however, an unintended tip clearance difference between configurations makes it difficult to determine if circumferentially grooved fan cases degraded fan performance. Fan exit turbulence measurements showed a 1.5% reduction in total turbulence intensity between hardwall and circumferentially grooved fan cases, which is attributed to the circumferential grooves modifying loading at the blade tips. The decrease in fan exit turbulence could potentially lead to a 1-2dB reduction in broadband rotor-stator interaction noise. Reduced aerodynamic performance losses associated with over-the-rotor liners could enable further fan noise reduction

    Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    Get PDF
    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper (Brown, C.A., "Jet-Surface Interaction Test: Far-Field Noise Results," ASME paper GT2012-69639, June 2012.) discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement

    Laser velocimeter measurements of the flowfield generated by an advanced counterrotating propeller

    Get PDF
    Results are presented of an investigation to measure the flowfield generated by an advanced counterrotating pusher propeller model similar to the full-scale Unducted Fan demonstrator engine. A laser Doppler velocimeter was used to measure the velocity field in several planes normal to the centerline of the model at axial stations upstream and downstream of each rotor. During this investigation, blades of the F4/A4 type were installed on the model which was operating in a freestream Mach 0.72 regime, with the advance ratio of each rotor set at 2.80. The measured data indicate only a slight influence of the potential field of each front rotor blade on the flowfield upstream of the rotor. The data measured downstream of the front rotor characterize the tip vortices, vortex sheets and potential field nonuniformities generated by the front rotor. The unsteadiness of the flow in the rotating frame of reference of the aft rotor is also illustrated

    Phased Array Noise Source Localization Measurements Made on a Williams International FJ44 Engine

    Get PDF
    A 48-microphone planar phased array system was used to acquire noise source localization data on a full-scale Williams International FJ44 turbofan engine. Data were acquired with the array at three different locations relative to the engine, two on the side and one in front of the engine. At the two side locations the planar microphone array was parallel to the engine centerline; at the front location the array was perpendicular to the engine centerline. At each of the three locations, data were acquired at eleven different engine operating conditions ranging from engine idle to maximum (take off) speed. Data obtained with the array off to the side of the engine were spatially filtered to separate the inlet and nozzle noise. Tones occurring in the inlet and nozzle spectra were traced to the low and high speed spools within the engine. The phased array data indicate that the Inflow Control Device (ICD) used during this test was not acoustically transparent; instead, some of the noise emanating from the inlet reflected off of the inlet lip of the ICD. This reflection is a source of error for far field noise measurements made during the test. The data also indicate that a total temperature rake in the inlet of the engine is a source of fan noise

    Wind tunnel performance results of an aeroelastically scaled 2/9 model of the PTA flight test prop-fan

    Get PDF
    High speed wind tunnel aerodynamic performance tests of the SR-7A advanced prop-fan have been completed in support of the Prop-Fan Test Assessment (PTA) flight test program. The test showed that the SR-7A model performed aerodynamically very well. At the cruise design condition, the SR-7A prop fan had a high measured net efficiency of 79.3 percent

    Evaluating the Aerodynamic Impact of Circumferentially Grooved Fan Casing Treatments with Integrated Acoustic Liners on a Turbofan Rotor

    Get PDF
    NASA is investigating the potential of integrating acoustic liners into fan cases to reduce fan noise, while maintaining the fans aerodynamic performance. An experiment was conducted to quantify the aerodynamic impact of circumferentially grooved fan cases with integrated acoustic liners on a 1.5 pressure ratio turbofan rotor. In order to improve the ability to measure small performance changes, fan performance calculations were updated to include real gas effects including the effect of humidity. For all fan cases tested, the measured difference in fan isentropic efficiency was found to be less than the measurement repeatability for a torque-based efficiency calculation (approx. = 0.2%), however, an unintended tip clearance difference between configurations makes it difficult to determine if circumferentially grooved fan cases degraded fan performance. Fan exit turbulence measurements showed a 1.5% reduction in total turbulence intensity between hardwall and circumferentially grooved fan cases in the tip vortex region, which is attributed to a disruption in the formation of the tip leakage vortex. This decrease in fan exit turbulence could potentially lead to a 1-2dB reduction in broadband rotor-stator interaction noise. Reduced aerodynamic performance losses associated with over-the-rotor liners could enable further fan noise reduction

    Effects of a Forward-swept Front Rotor on the Flowfield of a Counterrotation Propeller

    Get PDF
    The effects of a forward-swept front rotor on the flowfield of a counterrotation model propeller at takeoff conditions at zero degree angle of attack are studied by solving the unsteady three-dimensional Euler equations. The configuration considered is an uneven blade count counterrotation model with twelve forward-swept blades on the fore rotor and ten aft-swept blades on the aft rotor. The flowfield is compared with that of a reference aft-swept counterrotation geometry and Laser Doppler Velocimeter (LDV) measurements. At the operating conditions considered, the forward-swept blade experiences a higher tip loading and produces a stronger tip vortex compared to the aft-swept blade, consistent with the LDV and acoustic measurements. Neither the solution nor the LDV data indicated the formation of a leading edge vortex. The predicted radial distribution of the circumferentially averaged axial velocity at the measurement station agreed very closely with LDV data, while crossflow velocities showed poor agreement. The discrepancy between prediction and LDV data of tangential and radial velocities is due in part to the insufficient mesh resolution in the region between the rotors and in the tip region to track the tip vortex. The vortex is diffused by the time it arrives at the measurement station. The uneven blade count configuration requires the solution to be carried out for six blade passages of the fore rotor and five passages of the aft rotor, thus making grid refinement prohibitive

    An Overview of Recent Phased Array Measurements at NASA Glenn

    Get PDF
    A review of measurements made at the NASA Glenn Research Center using an OptiNAV Array 48 phased array system is provided. Data were acquired on a series of round convergent and convergent-divergent nozzles using the Small Hot Jet Acoustic Rig. Tests were conducted over a range of jet operating conditions, including subsonic and supersonic and cold and hot jets. Phased array measurements were also acquired on a Williams International FJ44 engine. These measurements show how the noise generated by the engine is split between the inlet-radiated and exhaust-radiated components. The data also show inlet noise being reflected off of the inflow control device used during the test
    corecore