9 research outputs found

    An Investigation on Formability and Crystallographic Texture in Novel Magnesium Alloys

    Get PDF
    Magnesium alloys offer many advantages. They offer very low density and good strength. They also offer good damping properties. One of the industries where reducing component weight is the automotive industry. That makes the magnesium alloys good candidates for these applications. Reduced weight of an automobile means also lower fuel consumption. The hexagonal closed packed structure of magnesium, lends itself to strong mechanical anisotropy. In the current work, neutron diffraction was used to study the crystallographic texture developed in novel magnesium alloys during cold rolling operations. The texture was compared with that developed in the commercial AZ-31 magnesium alloy. Tests were run at the High-Pressure-Preferred-Orientation (HIPPO) beam line at Los Alamos National Lab. The texture was then analyzed using pole figures, created using the Material Analysis Using Diffraction (MAUD) software

    Interactive Virtual Scanning Electron Microscope Inspired by 3D Game-Design

    Get PDF
    The scanning electron microscope (SEM) has evolved to become an indispensable tool for research and education in engineering, physics, nanotechnology, geosciences, materials science, biological sciences and other fields. However, training on a physical SEM is costly, time consuming, and often unavailable in economically disadvantaged areas. Advances in computer technology have made interactive three-dimensional (3D) virtual laboratory an effective tool for training in medicine and many engineering and technology fields. In the current work, in order to provide cost-effective hands-on training, a virtual 3D SEM was developed using the game development engine Unity 3D. It contains realistic 3D models of the physical components, created using 3ds Max®, a software for 3D modeling and rendering. The components are manipulated with scripts programmed using C# and JavaScript and then paired with the corresponding model. Users may view and operate the virtual instrument, save images for further analysis, and write a report. The developed virtual SEM was tested on diverse groups of users at multiple institutions, each divided to treatment and control groups. Feedback from these tests was collected and used for improvements in the overall quality of the simulated experience. In addition, users reported the experience of training on the virtual SEM as enjoyable

    Thermomagnetic and magnetocaloric properties of metamagnetic Ni-Mn-In-Co Heusler alloy in magnetic fields up to 140 kOe

    Get PDF
    High cooling power of magnetocaloric refrigeration can be achieved only at large amounts of heat, which can be transferred in one cycle from cold end hot end at quasi-isothermal conditions. The simple and robust experimental method of direct measuring of the transferred heat of materials with magnetocaloric effect (MCE) in thermal contact with massive copper block with definite heat capacity in quasi-isothermal regime was proposed. The vacuum calorimeter for the specific transferred heat ∆Q and adiabatic temperature change ∆T measurements of MCE materials in the fields of Bitter coil magnet up to H = 140 kOe was designed and tested on samples of Ni43Mn37.9In12.1Co7 Heusler alloy with inverse MCE in the vicinity of meta-magnetostructural phase transition (PT). It was found, that the magnetic field H = 80 kOe produces complete PT from martensite to austenite with ∆Q = - 1600 J/kg at initial temperature 273 K

    Inhomogeneity and Anisotropy in Nanostructured Melt-Spun Ti2NiCu Shape-Memory Ribbons

    No full text
    Ti2NiCu exhibits outstanding properties, such as superelasticity. Recently, its functional properties were also demonstrated on the nanoscale, a fact that makes it the preferred choice for numerous applications. Its properties strongly depend on the manufacturing route. In this work, phase analysis, inhomogeneity, and texture of melt-spun Ti2NiCu ribbons were investigated using X-ray diffraction. Initially, the ribbons are amorphous. Passing an electric current result in controlled crystallization. Ribbons with 0%, 60%, and 96% crystallinity were studied. Both B2 austenite and B19 martensite phases were observed. Using grazing incidence X-ray diffraction, the inhomogeneity across the thickness was investigated and found to be substantial. At the free surface, a small presence of titanium dioxide may be present. Pole figures of 60% and 96% crystallinity revealed mostly strong fiber <100>B2 texture in the thickness direction. These observations may be inferred from the manufacturing route. This texture is beneficial. The inhomogeneity across the thickness has to be considered when designing devices

    Neutron Diffraction Study of the Martensitic Transformation and Chemical Order in Heusler Alloy Ni1.91Mn1.29Ga0.8

    No full text
    Heusler alloys of Ni-Mn-Ga compositions demonstrate ferromagnetic shape memory effect in the martensitic state. The transformation temperature and the chemical order depend strongly on the composition. In the current work, the structure and chemical order of the martensitic phase of Ni1.91Mn1.29Ga0.8 were studied using neutron diffraction; the diffraction pattern was refined using the FullProf software. It was determined that the structural transition occurs around 330 K. At room temperature, 300 K, which is below the martensite transformation temperature, all the Bragg reflections can be described by a monoclinic lattice with a symmetry of space group P 1 2/m 1 and lattice constants of a = 4.23047(7) [Ã…], b = 5.58333(6) [Ã…], c = 21.0179(2) [Ã…], beta = 90.328(1). The chemical order is of critical importance in these alloys, and it was previously studied at 363 K. Analysis of the neutron diffraction in the monoclinic phase shows that the chemical order is maintained during the martensitic transformation.Peer reviewe

    Transforming undergraduate engineering education with 3D virtual reality laboratory

    No full text
    We have been developing a unique set of 3D virtual laboratory experiments for use in an undergraduate materials science course, community college instructions, for demonstrations to the public and hands-on recruiting events for middle and high school students. The methodology and technology used is designed to make it possible to easily disseminate the laboratory to a large variety of institutions and locations. The fact that the laboratory is fully interactive makes for a realistic experience for the student. © American Society for Engineering Education, 2013

    Magnetocaloric and thermomagnetic properties of Ni2.18Mn0.82Ga Heusler alloy in high magnetic fields up to 140 kOe

    No full text
    Measurements of the adiabatic temperature change (ΔT) and the specific heat transfer (ΔQ) of Ni 2.18Mn0.82Ga Heusler alloy were taken in order to quantify the direct giant magnetocaloric effect of the alloy when it is in the vicinity of magneto-structural phase transition (PT) from paramagnetic austenite to ferromagnetic martensite, and their results are presented. A new vacuum calorimeter was used to simultaneously measure ΔT and ΔQ of magnetocaloric materials with a Bitter coil magnet in fields of up to H = 140 kOe. Other thermomagnetic properties of this alloy were investigated using standard differential scanning calorimetry and PPMS equipment. The maximal values of magnetocaloric effect in H = 140 kOe were found to be ΔT = 8.4 K at initial temperature 340 K and ΔQ = 4900 J/kg at 343 K. Using this direct method, we show that the alloy indeed demonstrates the largest value of ΔQ as compared with previously published results for direct measurements of magnetocaloric materials, even though at 140 kOe the magnetic field-induced magnetostructural PT is still not complete.Web of Science11716art. no. 16390

    [The effect of low-dose hydrocortisone on requirement of norepinephrine and lactate clearance in patients with refractory septic shock].

    No full text
    corecore