92 research outputs found

    Conformational analysis of the Streptococcus pneumoniae hyaluronate lyase and characterization of Its hyaluronan-specific carbohydrate-binding module

    No full text
    For a subset of pathogenic microorganisms, including Streptococcus pneumoniae, the recognition and degradation of host hyaluronan contributes to bacterial spreading through the extracellular matrix and enhancing access to host cell surfaces. The hyaluronate lyase (Hyl) presented on the surface of S. pneumoniae performs this role. Using glycan microarray screening, affinity electrophoresis, and isothermal titration calorimetry we show that the N-terminal module of Hyl is a hyaluronan-specific carbohydrate-binding module (CBM) and the founding member of CBM family 70. The 1.2 Å resolution x-ray crystal structure of CBM70 revealed it to have a β-sandwich fold, similar to other CBMs. The electrostatic properties of the binding site, which was identified by site-directed mutagenesis, are distinct from other CBMs and complementary to its acidic ligand, hyaluronan. Dynamic light scattering and solution small angle x-ray scattering revealed the full-length Hyl protein to exist as a monomer/dimer mixture in solution. Through a detailed analysis of the small angle x-ray scattering data, we report the pseudoatomic solution structures of the monomer and dimer forms of the full-length multimodular Hyl

    Metabolism of a hybrid algal galactan by members of the human gut microbiome

    Get PDF
    Native porphyran is a hybrid of porphryan and agarose. As a common element of edible seaweed, this algal galactan is a frequent component of the human diet. Bacterial members of the human gut microbiota have acquired polysaccharide utilization loci (PULs) that enable the metabolism of porphyran or agarose. However, the molecular mechanisms that underlie the deconstruction and use of native porphyran remains incompletely defined. Here, we have studied two human gut bacteria, porphyranolytic Bacteroides plebeius and agarolytic Bacteroidesuniformis, that target native porphyran. This reveals an exo-based cycle of porphyran depolymerization that incorporates a keystone sulfatase. In both PULs this cycle also works together with a PUL-encoded agarose depolymerizing machinery to synergistically reduce native porphyran to monosaccharides. This provides a framework for understanding the deconstruction of a hybrid algal galactan, and insight into the competitive and/or syntrophic relationship of gut microbiota members that target rare nutrients

    Application and validation of the notch master curve in medium and high strength structural steels

    Get PDF
    This paper applies and validates the Notch master curve in two ferritic steels with medium (steel S460M) and high (steel S690Q) strength. The Notch master curve is an engineering tool that allows the fracture resistance of notched ferritic steels operating within their corresponding ductile-to-brittle transition zone to be estimated. It combines the Master curve and the Theory of critical distances in order to take into account the temperature and the notch effect respectively, assuming that both effects are independent. The results, derived from 168 fracture tests on notched specimens, demonstrate the capability of the Notch master curve for the prediction of the fracture resistance of medium and high strength ferritic steels operating within their ductile-to-brittle transition zone and containing notches

    Discovery and characterization of family 39 glycoside hydrolases from rumen anaerobic fungi with polyspecific activity on rare arabinosyl substrates

    Get PDF
    Enzyme activities that improve digestion of recalcitrant plant cell wall polysaccharides may offer solutions for sustainable industries. To this end, anaerobic fungi in the rumen have been identified as a promising source of novel carbohydrate active enzymes (CAZymes) that modify plant cell wall polysaccharides and other complex glycans. Many CAZymes share insufficient sequence identity to characterized proteins from other microbial ecosystems to infer their function; thus presenting challenges to their identification. In this study, four rumen fungal genes (nf2152, nf2215, nf2523, and pr2455) were identified that encode family 39 glycoside hydrolases (GH39s), and have conserved structural features with GH51s. Two recombinant proteins, NF2152 and NF2523, were characterized using a variety of biochemical and structural techniques, and were determined to have distinct catalytic activities. NF2152 releases a single product, β1,2-arabinobiose (Ara2) from sugar beet arabinan (SBA), and β1,2-Ara2 and α-1,2-galactoarabinose (Gal-Ara) from rye arabinoxylan (RAX). NF2523 exclusively releases α-1,2-Gal-Ara from RAX, which represents the first description of a galacto-(α-1,2)-arabinosidase. Both β-1,2-Ara2 and α-1,2-Gal-Ara are disaccharides not previously described within SBA and RAX. In this regard, the enzymes studied here may represent valuable new biocatalytic tools for investigating the structures of rare arabinosyl-containing glycans, and potentially for facilitating their modification in industrial applications

    A Criterion for Brittle Failure of Rocks Using the Theory of Critical Distances

    Get PDF
    This paper presents a new analytical criterion for brittle failure of rocks and heavily overconsolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as the critical distance. This fracture criterion is known as the Point Method, and is part of the Theory of Critical Distances, which is utilized in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, ó0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, óc and ót. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (óc/ót=3-50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low confining stresses.The work presented was initiated during a research project on “Structural integrity assessments of notch-type defects", for the Spanish Ministry of Science and Innovation (Ref.: MAT2010-15721)

    NOUVELLE APPROCHE STATISTIQUE DE LA TENACITE

    No full text
    La ténacité des matériaux céramiques a été déterminée sous sollicitation statique et dynamique. La dispersion dans les résultats de la ténacité est étudiée à l'aide des fonctions de distribution à deux et à trois paramétres. L'évolution des valeurs des paramétres obtenues est analysé. L'analyse d'images a permis de mettre en évidence la répartition des défauts activés. La combinaison de la loi de répartition de ces défauts et de la mécanique de la rupture nous a permis de proposer une nouvelle méthode pour décrire la probabilité de rupture. Cette dernière présente l'avantage de prendre en compte la densité de défauts activés durant le processus de rupture.Toughness of ceramic materials was determined under static and dynamic loading. Scatter in toughness results was investigted with two or three parameters distribution function. The values of these parameters were analysed. Image analysis showed the distribution of activated defects. A new method to describe the fracture probability was obtained by using the distribution law of defects and fracture mechanics. This method has the advantage of taking into account the density of defects activated during facture processus

    NOUVELLE APPROCHE STATISTIQUE DE LA TENACITE

    No full text
    La ténacité des matériaux céramiques a été déterminée sous sollicitation statique et dynamique. La dispersion dans les résultats de la ténacité est étudiée à l'aide des fonctions de distribution à deux et à trois paramétres. L'évolution des valeurs des paramétres obtenues est analysé. L'analyse d'images a permis de mettre en évidence la répartition des défauts activés. La combinaison de la loi de répartition de ces défauts et de la mécanique de la rupture nous a permis de proposer une nouvelle méthode pour décrire la probabilité de rupture. Cette dernière présente l'avantage de prendre en compte la densité de défauts activés durant le processus de rupture

    Two complementary α-fucosidases from Streptococcus pneumoniae promote complete degradation of host-derived carbohydrate antigens

    No full text
    An important aspect of the interaction between the opportunistic bacterial pathogen Streptococcus pneumoniae and its human host is its ability to harvest host glycans. The pneumococcus can degrade a variety of complex glycans, including N- and O-linked glycans, glycosaminoglycans, and carbohydrate antigens, an ability that is tightly linked to the virulence of S. pneumoniae Although S. pneumoniae is known to use a sophisticated enzyme machinery to attack the human glycome, how it copes with fucosylated glycans, which are primarily histo-blood group antigens, is largely unknown. Here, we identified two pneumococcal enzymes, SpGH29C and SpGH95C, that target α-(1→3/4) and α-(1→2) fucosidic linkages, respectively. X-ray crystallography studies combined with functional assays revealed that SpGH29C is specific for the LewisA and LewisX antigen motifs and that SpGH95C is specific for the H(O)-antigen motif. Together, these enzymes could defucosylate LewisY and LewisB antigens in a complementary fashion. In vitro reconstruction of glycan degradation cascades disclosed that the individual or combined activities of these enzymes expose the underlying glycan structure, promoting the complete deconstruction of a glycan that would otherwise be resistant to pneumococcal enzymes. These experiments expand our understanding of the extensive capacity of S. pneumoniae to process host glycans and the likely roles of α-fucosidases in this. Overall, given the importance of enzymes that initiate glycan breakdown in pneumococcal virulence, such as the neuraminidase NanA and the mannosidase SpGH92, we anticipate that the α-fucosidases identified here will be important factors in developing more refined models of the S. pneumoniae-host interaction.</p

    Plan a cinq ans du departement, (SAD) (1992-1996)

    No full text
    * INRA Centre de Recherche d'Avignon, URD, Domaine St Paul, BP 91, 84143 Montfavet cedex Diffusion du document : INRA Centre de Recherche d'Avignon, URD, Domaine St Paul, BP 91, 84143 Montfavet cedexNational audienc
    • …
    corecore