200 research outputs found

    By

    Get PDF
    Vowel normalization is a computation that is meant to account for the differences in the absolute direct (physical or psychophysical) representations of qualitatively equivalent vowel productions that arise due to differences in speaker properties such as body size types, age, gender, and other socially interpreted categories that are based on natural variation in vocal tract size and shape. In this dissertation, we address the metaphysical and epistemological aspects of vowel normalization pertaining to spoken language acquisition during early infancy. We begin by reviewing approaches to conceptualizing and modeling the phonetic components of early spoken language acquisition, forming a catalog of phenomena that serves as the basis for our discourse. We then establish the existence of a vowel normalization computation carried out by infants early in their spoken language acquisition, and put forward a conceptual and technical framework for its investigation which focuses attention on the generative nature of the computation. We then situate the acquisition of vowel normalization within a broader developmental framework encompassing a suite of vocal learning phenomena, including language-specific caretaker vocal exchanges

    Highly dynamic servohydraulic motion control

    Get PDF

    Highly dynamic servohydraulic motion control

    Get PDF

    APRIL:TACI axis is dispensable for the immune response to rabies vaccination.

    Get PDF
    There is significant need to develop a single-dose rabies vaccine to replace the current multi-dose rabies vaccine regimen and eliminate the requirement for rabies immune globulin in post-exposure settings. To accomplish this goal, rabies virus (RABV)-based vaccines must rapidly activate B cells to secrete antibodies which neutralize pathogenic RABV before it enters the CNS. Increased understanding of how B cells effectively respond to RABV-based vaccines may improve efforts to simplify post-exposure prophylaxis (PEP) regimens. Several studies have successfully employed the TNF family cytokine a proliferation-inducing ligand (APRIL) as a vaccine adjuvant. APRIL binds to the receptors TACI and B cell maturation antigen (BCMA)-expressed by B cells in various stages of maturation-with high affinity. We discovered that RABV-infected primary murine B cells upregulate APRIL ex vivo. Cytokines present at the time of antigen exposure affect the outcome of vaccination by influencing T and B cell activation and GC formation. Therefore, we hypothesized that the presence of APRIL at the time of RABV-based vaccine antigen exposure would support the generation of protective antibodies against RABV glycoprotein (G). In an effort to improve the response to RABV vaccination, we constructed and characterized a live recombinant RABV-based vaccine vector which expresses murine APRIL (rRABV-APRIL). Immunogenicity testing in mice demonstrated that expressing APRIL from the RABV genome does not impact the primary antibody response against RABV G compared to RABV alone. In order to evaluate the necessity of APRIL for the response to rabies vaccination, we compared the responses of APRIL-deficient and wild-type mice to immunization with rRABV. APRIL deficiency does not affect the primary antibody response to vaccination. Furthermore, APRIL expression by the vaccine did not improve the generation of long-lived antibody-secreting plasma cells (PCs) as serum antibody levels were equivalent in response to rRABV-APRIL and the vector eight weeks after immunization. Moreover, APRIL is dispensable for the long-lived antibody-secreting PC response to rRABV vaccination as anti-RABV G IgG levels were similar in APRIL-deficient and wild-type mice six months after vaccination. Mice lacking the APRIL receptor TACI demonstrated primary anti-RABV G antibody responses similar to wild-type mice following immunization with the vaccine vector indicating that this response is independent of TACI-mediated signals. Collectively, our findings demonstrate that APRIL and associated TACI signaling is dispensable for the immune response to RABV-based vaccination

    full simulation of a piezoelectric double nozzle flapper pilot valve coupled with a main stage spool valve

    Get PDF
    Abstract This paper develops a detailed simulation model, realized by the software Simscape, which can be a powerful tool to analyze the performance of a double nozzle flapper valve actuated by a piezoelectric ring bender. The particularity of this valve is that the use of the torque motor and flexure tube is avoided, thus reducing the complexity, manufacturing time and cost of the valve assembly. The model accounts for all the real phenomena present in the valve, such as fluid compressibility and fluid viscosity. The viability of the valve concept is validated by step tests simulated at different valve openings. It is shown that the response time obtained for a supply pressure of 210 bar and necessary to reach 90% of the maximum opening degree (corresponding to a maximum spool position of 1mm and maximum flow rate of 60 l/min) is only 6 ms, which is comparable with typical commercially available double nozzle flapper valves, but with the advantage of having removed critical components such as the torque motor and the flexure tube

    Learning control strategies for high-rate materials testing machines

    Get PDF
    Hydraulic high strain rate materials testing machines are required to track a user-defined velocity profile during tensile or compression tests in the face of sudden large impact forces. Due to delays and limited bandwidth of the actuation system, causal feedback/feedforward controllers fail to compensate for these disturbances. This paper presents more suitable non-causal learning control strategies, which anticipate the impact and take corrective action in advance. Two control strategies are discussed. The first comprises an iterative algorithm, which calculates a command signal correction by passing the velocity error observed in the previous test through an inverse model linearized around the target velocity. In the second approach, a detailed nonlinear inverse model is used to obtain a command signal from demand motion and force data. It is concluded that the first method is superior if two or more iterations can be performed. </jats:p

    A novel high efficiency electro-hydrostatic flight simulator motion system

    Get PDF

    A novel high efficiency electro-hydrostatic flight simulator motion system

    Get PDF
    • …
    corecore