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Learning Control Strategies for

High-Rate Materials Testing Machines
Proc. IMechE, Part I: J. of Syst. and Control Eng., 225(8):1125-1135.

Michael Schlotter’ Andrew Plummer'

DRAFT

Hydraulic high strain rate materials testing machines are required to track
a user-defined velocity profile during tensile or compression tests in the face
of sudden large impact forces. Due to delays and limited bandwidth of the
actuation system, causal feedback/feedforward controllers fail to compensate
for these disturbances. This paper presents more suitable non-causal learning
control strategies, which anticipate the impact and take corrective action
in advance. Two control strategies are discussed: The first comprises an
iterative algorithm, which calculates a command signal correction by passing
the velocity error observed in the previous test through an inverse model
linearised around the target velocity. In the second approach, a detailed
nonlinear inverse model is used to obtain a command signal from demand
motion and force data. It is concluded that the first method is superior if

two or more iterations can be performed.
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Nomenclature
q cross-piston leakage
k actuator stiffness coefficient

Ay, Ay actuator areas
bulk modulus

B
Cp, Cp linearisation coefficients

F specimen force
K, valve constant
M mass of moving parts

P., P;  return/supply pressure
Py, P, actuator chamber pressures

@1, Q2 actuator chamber flows

Ty delay samples

T sample time

U piston velocity

Vi, Vo actuator chamber volumes

W drive signal

X valve spool displacement

X normalised valve spool displacement
Y piston displacement

) delay

(1, 2 valve/actuator damping

w1, we  valve/actuator eigenfrequency
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1 Introduction

Iterative motion control of hydraulic actuators originated in the automotive area [1| and is
still widely used in structural and materials testing applications [2, 3]. The objective is to
reproduce a certain target motion profile specified by the user or measured in field tests.
This strategy falls within the framework of iterative learning control (ILC), which has
received significant attention from the control community in the last two decades [4, 5.

ILC aims to improve the transient response of systems operating repetitively over
a fixed time interval. In contrast to non-learning controllers, which cause the same
tracking errors in each pass, ILC uses existing error information from previous trials to
modify the control signal for the next repetition. As control signals are computed off-
line, non-causal signal processing such as forward shifting and zero-phase filtering can be
employed. Hence, learning controllers can anticipate repeating disturbances and respond
preemptively. This feature proves to be particularly valuable for plants subjected to
rapid transient disturbances, which can not be rejected well by traditional closed-loop
controllers due to delays and limited bandwidth of the actuation system.

Numerous ILC algorithms have been proposed, and design methods range from manual
tuning of PD-type learning controllers to more systematic approaches based on quadrat-
ically optimal design and H, synthesis [6]. Commonly, ILC performance is assessed
by the asymptotic value of the tracking error after an infinite number of iterations, and
most ILC concepts can be shown to yield satisfactory results. In practice, however, the
transient learning behaviour, i.e. the reduction rate of the error magnitude during the
first few iterations, is a more important performance criterion. Although monotonic
convergence can usually be achieved, the convergence rate can be relatively slow espe-
cially with simple PD-type ILC algorithms. This is a major issue for destructive testing
applications, considering that a specimen is destroyed during each test.

By using a plant inversion algorithm, the tracking error can, in theory, be reduced to
zero in only one iteration. Of course, high-order ill-conditioned plants, modelling errors,
non-minimum phase zeros, and inherent physical limitations of the machine make this
impossible. Nevertheless, ILC strategies based on inverted dynamics can be successful,
see |7, 8| for example. Experimentally identified frequency domain models are commonly
used in the testing industry for that purpose, so that a priori knowledge about the plant
and specimen dynamics is not necessary. As the characteristics of hydraulic actuation
systems and the specimen are nonlinear, adaptive algorithms are occasionally employed
to update the linear plant model during the iteration process depending on the current
operating point.

Inverse plant models must be derived analytically for certain systems, which do not
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lend themselves to experimental frequency response measurements. Examples in the
literature include a uni-directionally operating catapult for crash test simulations [9]. In
this application with purely inertial loads, the target acceleration command is perturbed
with the acceleration error from the previous test. This modified target acceleration signal
is then passed through a nonlinear inverse model, which calculates the new drive signal. A
different control algorithm for high speed materials testing machines is presented in [10].
In this case, a drive signal correction is derived with a linear inverse model from the
measured velocity error of the previous test. This correction is then added to the original
drive signal for the next run.

This paper briefly describes the challenges encountered with high-rate testing in Sec-
tion 2. The physical modelling and linearisation of a typical high-rate testing machine is
outlined in Section 3. Section 4 shows how the linear iteration method described in [10]
can be improved by considering not only the velocity error but also the force measure-
ments from the previous test for drive signal profiling. In Section 5, a nonlinear approach
for calculating the command signal from with demand motion and force information is
presented. Section 6 compares the performance of the algorithms and discusses their

usefulness in practice.

2 High-Rate Materials Testing

High rate materials testing is used for automotive crash worthiness assessment, sports
equipment safety checks, and material characterisation. The aim is to extend or compress
a specimen until destruction with a pre-defined velocity, which may be constant or time-
varying. Typical test velocities range from 0.1 m/s to 20m/s at forces of up to 500 kN.
A high strain rate materials testing machine is of similar appearance to a conventional
hydraulic machine for quasi-static tensile, compression or fatigue testing. However, there
are differences in the construction to enable much higher actuator velocities: large supply
and return line accumulators, high flow rate 3-stage valves, a low friction cylinder, and
special grips which only grip the specimen once the actuator has been accelerated up to
speed. A picture and a simplified schematic of the hydraulic circuit is shown in Figure 1.
From the control perspective, the medium speed range (= 1—8 m/s) is the most critical.
At low speeds, conventional feedback controllers can successfully reduce velocity errors,
and at high speeds, when the inertial energy of the moving parts is large compared to
the strain energy required to break the specimen, the drop in velocity during the loading
period is small even without any compensation. At medium speeds, however, large
tracking errors can be observed as the impact energy is large compared to the inertial

energy and closed-loop control strategies are too slow to take corrective action. In these

M Schlotter, AR Plummer 5



Learning Control Strategies for High-Rate Materials Testing Machines

operating conditions, a well designed iterative learning controller will yield significant
tracking performance improvements.

An example of an experimental high strain rate tensile test with iterated drive signal
is shown in Figure 2. Velocity, command signal, and force obtained with a steel specimen
at a constant target velocity of 4m/s are plotted. Velocity data is derived from LVDT
position measurements, filtered by a non-causal, zero-phase 4th order Butterworth filter
with 500 Hz cut-off frequency, which eliminates phase distortion by processing the input
data in forward and reverse directions [11]. The force data is unfiltered, and some high-
frequency oscillations due to load cell ringing can be observed. The actual test (i.e. the
period when the specimen is loaded) and the drive signal profiling window are marked
with dark and light grey shading, respectively.

For the first run, a constant drive signal is derived based on the known steady-state
drive signal/velocity characteristics of the machine. The settling time is around 35ms,
and the specimen is hit after 43.2 ms. The force quickly rises to 15 kN causing the velocity
to decrease down to a minimum of 2.75m/s at 46.2ms. The specimen breaks shortly
afterwards at 46.8 ms.

The total loading period lasts 3.6 ms only, which is similar to the valve delay. It is
therefore obvious that closed-loop disturbance rejection is not feasible. Instead, the drive
signal for the next test is profiled with a linear iterative method. The profiling window
spans from 10ms before to 5ms after the test; outside of this window the signal is left
unchanged.

The initial part of the second run with modified command is similar to before, but the
specimen is hit slightly earlier at 41 ms. This can be explained by mounting tolerances
and the slight acceleration of the actuator shortly before impact. The velocity drops to
3.5m/s at 42.6 ms before rising again to 4.3m/s when the specimen breaks at 44.4 ms.
After the break, the piston is accelerated further before hitting the bump stops — however,
the velocity after the test is irrelevant. Therefore, after one iteration, the maximum
velocity error has been reduced from 1.25m/s to 0.5m/s. With further iterations, a
reduction to around 15-20% of the initial velocity error can be expected.

All iterative strategies rely on the machine and specimen characteristics remaining
unchanged from one test to the next. Purely inertial loads satisfy this requirement by
default, but tensile testing forces will vary due to slight differences between specimen and
changes in test velocity after drive signal adjustments. Particular attention should be paid
to the run-up being equal between tests, which is the period from initially accelerating
the actuator until gripping the specimen. It must be assured that the initial position of
the actuator is correct, the specimen aligned properly, and that the drive signal is timed

accurately.

M Schlotter, AR Plummer 6



Learning Control Strategies for High-Rate Materials Testing Machines

3 Machine Dynamics

In the following sections, the nonlinear system equations for the circuit in Figure 1 are

presented, a linearised model is derived, and the influence of actuator forces is discussed.

3.1 Nonlinear Model

Fluid compressibility, piston leakage, and nonlinear valve orifice characteristics are taken
into account. Valve spool displacement is approximated by a second-order transfer func-
tion with delay. For brevity, only positive spool displacements (open flow path between
supply and actuator chamber 1) are considered in the derivation below; the relationships

for negative displacements are analogous.

Piston force balance with specimen load F':
PlA] — PbAy = MU + F (1)

Cylinder flow equations with bulk modulus B and leakage coefficient ¢;:

Vi -

Ql = AIU =+ Elpl + (Pl — PQ)CZ (2&)
Vo .

Q2 = AU — §2P2 + (Pl — PQ)C[ (2b)

Valve orifice equations with valve constant K, for positive spool displacements (X > 0):

QIZK'UX Py — P (3&)
Q2:KUX P, — P, (Bb)
Spool dynamics relating demand signal W to spool displacement X:

w%e_s‘S
82+ 2Cw1s + w?

3.2 Linearisation

It is assumed that the actuator is symmetric, and the piston in centre position. The
model is linearised for steady-state operation at a velocity I/ with static actuator force
F. In this case, the piston acceleration is zero and flows @)1 and Q2 are equal. From (1)
and (3):

f
PI_PQZZ and P+ P, =P, + P, (5)
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therefore ) F ) 7
P1:2(PS+PT+A> and P2:2<PS+PT_A> (6)
Equating (2a) and (3a), and substituting (6) for Py, P» leads to
P, — P, A
AU:KXV 2‘” —%q (7)

Using the small perturbation technique for the valve orifice equations (3) gives

) )

n= %’f * anfm = Crz = Cpipy (8a)
) )

g2 = —a%x + 8?35192 = Caax + Cpopo (8b)

where the lower case symbols p, ¢, x represent small changes of pressure, flow, and spool
displacement around the operating point chosen for linearisation. Considering (6), the

linearisation coeflicients can be expressed as

P,—P.—F/A
Cx = U1 = C:EQ = \/SQ.F/ (ga)
K, X
Cp = Cpl = Cpg = (9b)

V2(Ps — P, — F/A)

Equating (8) with (2) for small perturbations in the cylinder flow equations, solving for

p1, p2, and substituting the results into (1) leads to the linear second order actuator

model
2kACy ,, _ sTk(Cp+2c) f
2 2k A2
52+ k(Cp + 2¢)s + =57
with stiffness coefficient & = % = %. The inputs « and f are small perturbations in

spool displacement and specimen force, respectively, and the output u represents small
changes around the linearisation velocity.

At zero force,

(11)

and X
vl (
Cpr—o= = 12
p,]: 0 2(PS—P7«) Ps_Pr ( )

1N
Ny

Normalising x so that it equates to steady-state actuator velocity gives

Ty = ¢ (13)
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and substituting (12, 13) into (10) leads to the second order linear time-invariant actuator

model
A2, stk (2 +21)
u= ? M - (14)
2+ k ( ) s+ 2k4
With
2k A2 kM kMc?
w3 = i and G =CQU+ o=/ 5U+ L (15)

8(Ps — P,)2 242

equation (14) can be written as

1 9 5 + 2w
_ . _ 5+ 26w 16
b s2 + 2Cows + w3 <w2xv f> (16)

3.3 Influence of Actuator Force

With F # 0, the linearisation coefficients depend on the actuator load and the valve spool
displacement. A non-zero static actuator load changes the valve spool displacement —

steady-state velocity relationship (13) to

ColF) IQ,\/PS—PT—.F/A N an

This can be split into a part for 7 = 0 and a force dependent factor r(F), which may be

used to modify the gain (or lookup table) relating x, to x:

=4/1- P P \/ (18)

The block diagram in Figure 3 shows the structure of the plant model including force

Ty = r(]:)

dependent actuator model (16) and spool dynamics (4). The block with the nonlinear
curve represents a calibration table relating steady-state drive signal to actuator velocity.
In the simplest case, it is a constant gain as shown in equation (13). In practice, however,
it is implemented as lookup table based on measured values for various operating points.
This can account for valve nonlinearities, e.g. deadband due to spool overlap.

The factor 7(F) defined in equation (18) effectively implements the standard steady-
state square-root velocity/force characteristic of an hydraulic actuator. During a test,
the load is not static of course, but increases rapidly when the specimen is gripped. Part
of the specimen breaking energy comes from the decreasing inertial energy of the moving
mass, hence only a fraction of the measured force is actually “seen” by the actuator.

This is accounted for by the factor ¢;, which converts the actual measured force to an

M Schlotter, AR Plummer 9
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equivalent steady-state force
]: = ClF (19)

A value ¢; = 0 implies that the specimen force has no effect on the pressures in the
actuator, whereas ¢; = 1 implies that inertial energy does not contribute at all to the
breaking energy. In reality, c; is larger at low velocities, and small at the higher end of
the speed range.

In case of Cp, a non-zero steady state actuator force changes equation (12) to

AU+ Zq

Cp=——A"
" pP-P-%

(20)
The damping coefficient (5 therefore increases with load, which is implied by equa-
tion (10). This effect is not considered in the current implementation, because its influ-
ence on the tracking error and ILC performance is significantly lower than that of the
force dependent changes in steady state velocity. Furthermore, estimating (o as a func-
tion of steady state velocity and static force would cause difficulties during experimental
parameter identification. It may be feasible in a lab environment, but the process is
too complicated for commercial use. As a workaround, machine operators can slightly

increase the value of (o if strong specimen are tested.

4 Linear Iterative Control

An iterative controller calculates a new drive signal from measured motion and force data,
so the linear model derived in the previous section must be discretised and inverted. A

regular “forward” model is also derived for model identification and parameter tuning.

4.1 Model Discretisation

The first order force gain, which is only used in the forward model (c.f. Figure 3), is

discretised with the Euler approximation s ~ (1 — 27 1) /Ty:

s+ 2C2w2 ~ (1 — 271)/T5 + 2(2&)2 _ 2(2(,4.12 14 1—21 (21)
M M M 2Cowo T

Discrete valve and actuator transfer functions are calculated to have the same pole
positions and steady-state gain as the continuous time model. Using the pole mapping
technique guarantees that there are no non-minimum phase zeros, which would cause

instability in the inverse model.
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Actuator dynamics:

A(z) = = (22)

Valve dynamics:

x(z
Viz) = w((z)) - (1 — zlesuiTs) (1 — 2 Lese2Ts) (23)
Sal, Sa2, Svl, Sy2 are the complex poles of the continuous-time valve and actuator models
(4, 16), and T is the sample interval. The gains b, and b, are set to give unity steady-
state gain. The pure dead time in the valve model is also replicated to the nearest sample
interval by
D(z) =z Ta (24)

where Ty is an integer chosen to yield
(25)

4.2 Inverse Model Structure

The block diagram in Figure 4 shows the structure of the inverse model. Inputs are
demand velocity, measured velocity, and measured force. Velocity can be derived from
zero-phase filtered LVDT position data. Fourth order Butterworth filters with cut-off
frequencies between 300-500 Hz are suitable, depending on the amount of noise. If accel-
eration is also measured, then more accurate velocity information can be obtained using
complementary filters [12, 13].
Demand velocity and measured velocity are passed independently through the inverse
actuator model o o
A1 (2) = (1 — 2z tesat 52(1 — 27 gfa2ls) (26)

a

in order to ensure the correct operating point for the nonlinear gain relating steady-state
velocity to drive signal voltage. The measurement is then subtracted from the demand
to get the correction signal. This is multiplied by 1/r(F) to account for the reduced
actuator speed under load, passed through the inverse valve model

(1 _ Z—lesst)(l _ Z—leSvQTs)

Vlz) = . (27)

and shifted by Ty samples. Finally, all samples outside the profiling window are set to
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zero, and the resulting signal is passed through a phase compensated low-pass filter

1—p

L=—-—P_
1—pz—l’

p=0.7 (28)
to make it less likely that the valve is driven into saturation.

4.3 System ldentification

Valve spool dynamics (4) can be estimated from data sheets, and approximate actuator
model parameters can be calculated with equation (15). These initial values must then
be tuned by comparing the measured machine response with model output. Figure 5
shows a graphical user interface developed for identification tasks. Appropriate steps

are:
1. Estimate model parameters from known physical values of the machine.

2. Perform velocity calibration, i.e. tests without specimen and constant valve drive

signals to determine nonlinear gain relating x, to x at zero load.

3. Accelerate the piston and shut the valve when the cylinder is in mid-position. The

resulting oscillations can be used to adjust ws and (a9.

4. Use square-wave drive signals around different mean velocities to adjust (21 and
the valve model parameters. Valve dynamics dominate in these tests as the valve

has lower bandwidth than the actuator.

5. Perform some tests with different strength specimen for fine-tuning and adjusting

load influence factor ¢;.

It is advisable to check the match between model and plant before the first iteration,
whenever the target velocity is changed, or a new type of specimen is tested (e.g. to
adjust ¢; depending on velocity and (o9 depending on specimen strength, as discussed in
Section 3.3).

5 Nonlinear Learning Control

Learning control using a nonlinear inverse model differs from the linear case in that the
superposition principle does not apply. Hence, it is not possible to derive drive signal
corrections, which are then added to the original drive signal. Instead, any perturbations

have to be applied to the inputs of the inverse model.
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5.1 Nonlinear Model Implementation

The nonlinear forward and inverse models implement the equations

Vi .

Elp1 (P — Py) — Ky X/Ps— P+ AU =0 (29a)

Vo .

§2P2 — (P — Py) + Ko X /Py — P. — AU = 0 (29D)
PiA] — PyAy — MU - F =0 (29¢)

which follow from (1-3) by eliminating @ and Q2. Valve spool dynamics are again
represented by the linear second order model (4). The chamber volumes are dependent

on cylinder displacement:
Vi=Vig+A1Y and V5 =V — AY (30)

and so is the supply pressure:
Ps = PsO - dach (31)

V1o, Voo are the chamber volumes at piston displacement Y = 0, Py is the initial accu-
mulator pressure, and d,.. an accumulator discharge coefficient. The linear equation (31)
ignores the adiabatic nature of the accumulator discharging process, but this is an ac-
ceptable simplification in practice.

For the forward model with inputs X (¢) and F(t), (29) is a system of ordinary differ-
ential equations (ODE) with solutions P (t), P2(t), Y (t). The inverse model has inputs
F(t), Y(t), U(t), U(t) and solutions P;(t), P»(t), X (t), which makes (29) a Hessenberg
index-2 system of differential algebraic equations (DAE) in the form

m = f(t,m,n) (32a)
0=g(t,m) (32b)

with m = [Py, P,]T, n = X. Differentiating (29c) with respect to time, substituting P,
P, from (29a), (29b), and rearranging gives

P 10 0] [&(-alPh—P)+KnXVP— P —AU)
Bl=10 1 0| ]| & (alPh—P)—KoXVP— P+ AU) (33)
0 A -4y 1 ~MU — F

This reduces the problem to solving a semi-explicit DAE system of index 1 with nonsin-
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gular Jacobian g,:

m = f(t,m,n) (34a)
0=g(t,m,n) (34b)

Systems of the form (34) can be solved numerically with the standard Matlab solver ode-
15s as well as with common directional block diagram languages like Simulink [14]. The
price for this convenience is having to differentiate the force and motion inputs, which

may necessitate rather aggressive filtering of measured data, depending on noise content.

5.2 Drive Signal Calculation

Initial parameters for the model are estimated from actual machine data. These can then
be tuned with system identification procedures similar to those listed in Section 4.3.

The first test run is carried out with a drive signal profile based on the steady-state
voltage/velocity calibration data for the particular machine. In contrast to the linear
approach, only the force data in conjunction with demand motion is used as input for
the inverse model after the first trial. In theory, the output is a drive signal that maintains
the demand motion under the influence of the measured force. Because the force profile
will differ in subsequent tests due to the changed actuator velocity with the new drive
signal, more than one iteration may be necessary.

The residual error should be small, but even after multiple iterations with identical
specimen, the result will not be accurate due to inherent model inaccuracies. There are
two options to reduce this error: linearise the model and use the algorithm from Section 4
for further iterations, or perturb the demand velocity input of the nonlinear inverse model
with a fraction of the velocity error. Ultimately, the achievable tracking error for a given
test is determined by physical limitations of the machine such as limited valve flow and
slew rate. This is highlighted by the last equation in (33). The occurence of the force
derivative F implies that very large actuator flows are required if the force changes
rapidly. In general, fast valves, a stiff frame and actuation system, large accumulators,
as well as large inertia of the moving parts are desirable characteristics for this type of

testing machine.

6 Algorithm Performance

It is now examined whether considering the force influence improves the existing linear

inverse controller, and how the nonlinear strategy compares with the linear method.
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The main performance criteria are the velocity errors after up to three iterations, and
the sensitivity to changes in operating conditions such as target velocity and specimen
strength. Tests are simulated with a very detailed model of a high-rate machine, which
has a rated maximum force of 100 kN and a rated maximum velocity of 20m/s [10]|. Using
simulation results rather than experimental data gives an idea of the upper performance
limits, and has the advantage that conditions are repeatable — there are no differences
in specimen strength, zero mounting tolerances, and no problems with varying machine
parameters such as oil temperature, friction, and sensor noise. The simulation model is
similar to the nonlinear forward model described in Section 5, but additionally accounts
for limited valve slew rate, spool hysteresis, adiabatic accumulator discharging, as well
as load cell and frame dynamics. The specimen has a simple velocity independent stress-
strain relationship.

Simulations at target speeds of 2.5 m/s and 5 m /s were performed with specimen break-
ing forces of 50 kN and 100 kN. Figure 6 shows the results of the initial runs with constant
drive signals, which are used for iterations with the different algorithms. Crucial per-

formance parameters are the maximum and arithmetic mean velocity errors defined by

€mazr = mzax |Ui,actual - Ui,target| Vi Fy > Fipreshold (35&)

1 .
€mean — E Z |Ui,actual - ULtarget’ Vi F; > Fipreshold (35b)
7

where n is the number of samples for which the measured force is higher than a certain
threshold, here set to 1kN.

Table 1 lists the errors for the initial run and three subsequent iteration steps with
the following methods: linear algorithm without force compensation (¢; = 0), linear
algorithm with force compensation (¢; > 0), and the nonlinear strategy. In the last
case, the first two iterations were performed with force data alone. After two iterations
with the nonlinear algorithm, two different methods were tried for the third one: using
the nonlinear model with force data and perturbed velocity signal, and using the linear
model with ¢; = 0.5.

First Iteration For the linear method, setting ¢; = 1 gives the best results overall. In
particular, the maximum errors are reduced significantly. The mean errors only vary
with the stronger specimen. As expected, the nonlinear method is particularly beneficial
at low velocities and high specimen strengths. In the other cases it gives similar results

to linear control with force correction.
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Second Iteration The linear algorithm converge quickly in all cases. The results with
the nonlinear method are not improved by a second iteration step, which may be partly
due to the fact that the specimen characteristics in these simulations are independent of
velocity, hence the data fed into the inverse nonlinear model is virtually the same after

the initial and the second run.

Third Iteration Again, all tests with the linear method show good convergence. With
c1 = 1, the maximum velocity errors are now under 20% of the original values with
constant drive signal, which is a good result. In the nonlinear cases, perturbing the
velocity demand in addition to considering the measured force is not effective. However,

performing further iterations with the linear algorithm improves matters.

Summary The presented linear and nonlinear learning control strategies reduce the
maximum and mean velocity tracking errors of high strain rate tests. The linear method
converges quickly, especially if the force influence is considered. This is an important
fact in practice, where more than one or two iterations are often unacceptable due to the
limited number of specimen.

The nonlinear algorithm performs well with one iteration only. Subsequent steps do not
lead to further error reductions if the specimen characteristics are velocity independent.
Using it for the first step and then iterating with the linear model may be beneficial,

especially at low velocities and high forces.

7 Conclusions and Further Work

A high-rate materials test requires accurate tracking of a specified velocity profile under
the influence of high impact forces. The typical test duration measured from grabbing the
specimen until its destruction lies in the region of 1-10 ms. Inevitably, causal closed-loop
velocity control methods fail due to signal latency, plant delays, and limited actuator
bandwidth.

Learning controllers, however, utilise error information from past tests to anticipate
repeating disturbances and allow the preemptive modification of the drive signal. Linear
and nonlinear strategies based on inverse plant models have been presented, and it has
been shown that they reduce the tracking error significantly from the first repetition
onwards. The linear iteration method, which feeds the velocity errors through an inverse
model, is particularly useful if multiple iterations can be performed. The nonlinear

method, which calculates a new drive signal based on force measurements and the target
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velocity profile, may be beneficial for the first iteration, especially if large velocity tracking
errors are observed in the initial test.

The algorithms are currently being implemented in commercial machines, and mea-
sured results as well as user feedback will help to get an idea of what really works in
practice, and what does not. Further work will focus on using ILC together with closed-
loop control for improved velocity tracking at low speeds. This will permit control of
drive signal corrections by displacement rather than elapsed time from the start of the

test, which eliminates errors caused by different run-up times.
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Figure 1: Photograph and simplified hydraulic circuit of a materials testing machine.
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Figure 2: High strain rate tensile test of a steel specimen and a target velocity of 4m/s.

M Schlotter, AR Plummer

21



Learning Control Strategies for High-Rate Materials Testing Machines

Drive w wje™ x ‘ x
— P > —» 7 (F) v
%) 242G w5 + w? | (V) ‘ < (m/s)
v
7
Hl% @3
+
Force f° |5 +200, . !
™) M B s34 26 w08 + co%

Figure 3: Block diagram of the linearised plant model.
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Figure 4: Block diagram of the linear inverse model.
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Figure 6: Simulated tests with specimen breaking forces of 50kN and 100kN at two
different target speeds.
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(a) Maximum errors

Target velocity 2.5m/s 5m/s
Specimen Force 50 kN 100 kKN 50 kN 100 kKN
Initial run 1.45 (100%)  2.73 (100%) | 1.63 (100%) 3.28 (100%)
; linear, ¢; =0 0.70 (48.3%) 1.60 (58.3%) | 0.68 (41.9%) 1.60 (48.7%)
2 linear, ¢; = 0.5 | 0.67 (46.1%) 1.46 (53.6%) | 0.64 (39.1%) 1.39 (42.5%)
g linear, ¢; =1 0.63 (43.3%) 1.28 (46.9%) | 0.58 (35.5%) 1.05 (32.2%)
= nonlinear 0.70 (47.9%) 0.94 (34.6%) | 0.59 (36.2%) 1.10 (33.6%)
c; linear, ¢; =0 0.43 (29.3%) 1.02 (37.2%) | 0.39 (23.9%) 0.97 (29.7%)
2 linear, ¢; = 0.5 | 0.40 (27.7%) 0.91 (33.1%) | 0.36 (22.1%) 0.82 (25.0%)
g linear, ¢; =1 0.37 (25.7%) 0.75 (27.5%) | 0.33 (20.5%) 0.61 (18.7%)
= nonlinear 0.87 (59.7%) 0.98 (35.8%) | 0.59 (36.4%) 1.01 (30.9%)
o linear, ¢; =0 0.30 (20.3%) 0.70 (25.6%) | 0.27 (16.6%) 0.67 (20.3%)
g linear, ¢; = 0.5 | 0.29 (19.9%) 0.62 (22.8%) | 0.27 (16.5%) 0.57 (17.3%)
£ linear, ¢; = 1 0.29 (19.6%) 0.53 (19.5%) | 0.27 (16.5%) 0.45 (13.7%)
2 nonlin. w/ vel. | 0.82 (56.4%) 0.96 (35.1%) | 0.65 (40.0%) 1.05 (32.2%)
™ nonlin. w/ lin. | 0.84 (57.9%) 0.62 (22.5%) | 0.46 (28.5%) 0.72 (22.0%)
(b) Arithmetic mean errors
Target velocity 2.5m/s 5m/s
Specimen Force 50 kN 100 kN 50 kN 100 kN
Initial run 0.53 (100%)  1.10 (100%) | 0.98(100%)  2.10 (100%)
‘;' linear, ¢; =0 0.24 (44.7%) 0.49 (45.0%) | 0.27 (27.7%) 0.89 (42.2%)
2 linear, ¢; = 0.5 | 0.23 (44.4%) 0.42 (38.1%) | 0.26 (26.8%) 0.71 (33.7%)
E  linear, ¢; = 1 0.23 (44.3%) 0.36 (32.5%) | 0.26 (27.1%) 0.44 (21.0%)
o}
=~ nonlinear 0.37 (69.5%) 0.45 (40.9%) | 0.29 (29.4%) 0.49 (23.2%)
C; linear, ¢; =0 0.17 (32.5%) 0.31 (28.5%) | 0.19 (19.8%) 0.44 (21.1%)
2 linear, ¢; = 0.5 | 0.17 (32.3%) 0.30 (27.1%) | 0.19 (19.9%) 0.32 (15.4%)
£ linear, c; = 1 0.17 (32.3%) 0.32 (29.1%) | 0.20 (20.1%) 0.32 (15.2%)
o5}
=~ nonlinear 0.29 (55.3%) 0.38 (34.5%) | 0.22 (22.1%) 0.34 (16.2%)
o linear, ¢; =0 0.13 (24.7%) 0.25 (22.5%) | 0.16 (16.3%) 0.25 (12.0%)
g linear, ¢; = 0.5 | 0.13 (24.5%) 0.25 (22.5%) | 0.16 (16.2%) 0.24 (11.2%)
£ linear, ¢; = 1 0.13 (24.4%) 0.26 (23.5%) | 0.16 (15.9%) 0.25 (11.9%)
2 nonlin. w/ vel. | 0.26 (49.0%) 0.34 (31.1%) | 0.26 (26.5%) 0.46 (22.0%)
™ nonlin. w/ lin. | 0.22 (42.6%) 0.29 (26.8%) | 0.19 (19.8%) 0.31 (14.6%)

Table 1: Absolute velocity errors in (m/s) and relative errors compared to test with

constant drive signal.
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