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DRAFT 

Hydraulic high strain rate materials testing machines are required to track 
a user-defined velocity profile during tensile or compression tests in the face 
of sudden large impact forces. Due to delays and limited bandwidth of the 
actuation system, causal feedback/feedforward controllers fail to compensate 
for these disturbances. This paper presents more suitable non-causal learning 
control strategies, which anticipate the impact and take corrective action 
in advance. Two control strategies are discussed: The first comprises an 
iterative algorithm, which calculates a command signal correction by passing 
the velocity error observed in the previous test through an inverse model 
linearised around the target velocity. In the second approach, a detailed 
nonlinear inverse model is used to obtain a command signal from demand 
motion and force data. It is concluded that the first method is superior if 
two or more iterations can be performed. 
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Nomenclature
 

cl cross-piston leakage 
k actuator stiffness coefficient 
A1, A2 actuator areas 
B bulk modulus 
Cp, Cx linearisation coefficients 
F specimen force 
Kv valve constant 
M mass of moving parts 
Pr, Ps return/supply pressure 
P1, P2 actuator chamber pressures 
Q1, Q2 actuator chamber flows 
Td delay samples 
Ts sample time 
U piston velocity 
V1, V2 actuator chamber volumes 
W drive signal 
X valve spool displacement 
Xv normalised valve spool displacement 
Y piston displacement 
δ delay 
ζ1, ζ2 valve/actuator damping 
ω1, ω2 valve/actuator eigenfrequency 
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1 Introduction 

Iterative motion control of hydraulic actuators originated in the automotive area [1] and is 
still widely used in structural and materials testing applications [2, 3]. The objective is to 
reproduce a certain target motion profile specified by the user or measured in field tests. 
This strategy falls within the framework of iterative learning control (ILC), which has 
received significant attention from the control community in the last two decades [4, 5]. 
ILC aims to improve the transient response of systems operating repetitively over 

a fixed time interval. In contrast to non-learning controllers, which cause the same 
tracking errors in each pass, ILC uses existing error information from previous trials to 
modify the control signal for the next repetition. As control signals are computed off
line, non-causal signal processing such as forward shifting and zero-phase filtering can be 
employed. Hence, learning controllers can anticipate repeating disturbances and respond 
preemptively. This feature proves to be particularly valuable for plants subjected to 
rapid transient disturbances, which can not be rejected well by traditional closed-loop 
controllers due to delays and limited bandwidth of the actuation system. 
Numerous ILC algorithms have been proposed, and design methods range from manual 

tuning of PD-type learning controllers to more systematic approaches based on quadrat
ically optimal design and H∞ synthesis [6]. Commonly, ILC performance is assessed 
by the asymptotic value of the tracking error after an infinite number of iterations, and 
most ILC concepts can be shown to yield satisfactory results. In practice, however, the 
transient learning behaviour, i.e. the reduction rate of the error magnitude during the 
first few iterations, is a more important performance criterion. Although monotonic 
convergence can usually be achieved, the convergence rate can be relatively slow espe
cially with simple PD-type ILC algorithms. This is a major issue for destructive testing 
applications, considering that a specimen is destroyed during each test. 
By using a plant inversion algorithm, the tracking error can, in theory, be reduced to 

zero in only one iteration. Of course, high-order ill-conditioned plants, modelling errors, 
non-minimum phase zeros, and inherent physical limitations of the machine make this 
impossible. Nevertheless, ILC strategies based on inverted dynamics can be successful, 
see [7, 8] for example. Experimentally identified frequency domain models are commonly 
used in the testing industry for that purpose, so that a priori knowledge about the plant 
and specimen dynamics is not necessary. As the characteristics of hydraulic actuation 
systems and the specimen are nonlinear, adaptive algorithms are occasionally employed 
to update the linear plant model during the iteration process depending on the current 
operating point. 
Inverse plant models must be derived analytically for certain systems, which do not 
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lend themselves to experimental frequency response measurements. Examples in the 
literature include a uni-directionally operating catapult for crash test simulations [9]. In 
this application with purely inertial loads, the target acceleration command is perturbed 
with the acceleration error from the previous test. This modified target acceleration signal 
is then passed through a nonlinear inverse model, which calculates the new drive signal. A 
different control algorithm for high speed materials testing machines is presented in [10]. 
In this case, a drive signal correction is derived with a linear inverse model from the 
measured velocity error of the previous test. This correction is then added to the original 
drive signal for the next run. 
This paper briefly describes the challenges encountered with high-rate testing in Sec

tion 2. The physical modelling and linearisation of a typical high-rate testing machine is 
outlined in Section 3. Section 4 shows how the linear iteration method described in [10] 
can be improved by considering not only the velocity error but also the force measure
ments from the previous test for drive signal profiling. In Section 5, a nonlinear approach 
for calculating the command signal from with demand motion and force information is 
presented. Section 6 compares the performance of the algorithms and discusses their 
usefulness in practice. 

2 High-Rate Materials Testing 

High rate materials testing is used for automotive crash worthiness assessment, sports 
equipment safety checks, and material characterisation. The aim is to extend or compress 
a specimen until destruction with a pre-defined velocity, which may be constant or time-
varying. Typical test velocities range from 0.1m/s to 20m/s at forces of up to 500 kN. 
A high strain rate materials testing machine is of similar appearance to a conventional 

hydraulic machine for quasi-static tensile, compression or fatigue testing. However, there 
are differences in the construction to enable much higher actuator velocities: large supply 
and return line accumulators, high flow rate 3-stage valves, a low friction cylinder, and 
special grips which only grip the specimen once the actuator has been accelerated up to 
speed. A picture and a simplified schematic of the hydraulic circuit is shown in Figure 1. 
From the control perspective, the medium speed range (≈ 1−8m/s) is the most critical. 

At low speeds, conventional feedback controllers can successfully reduce velocity errors, 
and at high speeds, when the inertial energy of the moving parts is large compared to 
the strain energy required to break the specimen, the drop in velocity during the loading 
period is small even without any compensation. At medium speeds, however, large 
tracking errors can be observed as the impact energy is large compared to the inertial 
energy and closed-loop control strategies are too slow to take corrective action. In these 
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operating conditions, a well designed iterative learning controller will yield significant 
tracking performance improvements. 
An example of an experimental high strain rate tensile test with iterated drive signal 

is shown in Figure 2. Velocity, command signal, and force obtained with a steel specimen 
at a constant target velocity of 4m/s are plotted. Velocity data is derived from LVDT 
position measurements, filtered by a non-causal, zero-phase 4th order Butterworth filter 
with 500Hz cut-off frequency, which eliminates phase distortion by processing the input 
data in forward and reverse directions [11]. The force data is unfiltered, and some high-
frequency oscillations due to load cell ringing can be observed. The actual test (i.e. the 
period when the specimen is loaded) and the drive signal profiling window are marked 
with dark and light grey shading, respectively. 
For the first run, a constant drive signal is derived based on the known steady-state 

drive signal/velocity characteristics of the machine. The settling time is around 35ms, 
and the specimen is hit after 43.2ms. The force quickly rises to 15 kN causing the velocity 
to decrease down to a minimum of 2.75m/s at 46.2ms. The specimen breaks shortly 
afterwards at 46.8ms. 
The total loading period lasts 3.6ms only, which is similar to the valve delay. It is 

therefore obvious that closed-loop disturbance rejection is not feasible. Instead, the drive 
signal for the next test is profiled with a linear iterative method. The profiling window 
spans from 10ms before to 5ms after the test; outside of this window the signal is left 
unchanged. 
The initial part of the second run with modified command is similar to before, but the 

specimen is hit slightly earlier at 41ms. This can be explained by mounting tolerances 
and the slight acceleration of the actuator shortly before impact. The velocity drops to 
3.5m/s at 42.6ms before rising again to 4.3m/s when the specimen breaks at 44.4ms. 
After the break, the piston is accelerated further before hitting the bump stops – however, 
the velocity after the test is irrelevant. Therefore, after one iteration, the maximum 
velocity error has been reduced from 1.25m/s to 0.5m/s. With further iterations, a 
reduction to around 15–20% of the initial velocity error can be expected. 
All iterative strategies rely on the machine and specimen characteristics remaining 

unchanged from one test to the next. Purely inertial loads satisfy this requirement by 
default, but tensile testing forces will vary due to slight differences between specimen and 
changes in test velocity after drive signal adjustments. Particular attention should be paid 
to the run-up being equal between tests, which is the period from initially accelerating 
the actuator until gripping the specimen. It must be assured that the initial position of 
the actuator is correct, the specimen aligned properly, and that the drive signal is timed 
accurately. 
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3 Machine Dynamics 

In the following sections, the nonlinear system equations for the circuit in Figure 1 are 
presented, a linearised model is derived, and the influence of actuator forces is discussed. 

3.1 Nonlinear Model 

Fluid compressibility, piston leakage, and nonlinear valve orifice characteristics are taken 
into account. Valve spool displacement is approximated by a second-order transfer func
tion with delay. For brevity, only positive spool displacements (open flow path between 
supply and actuator chamber 1) are considered in the derivation below; the relationships 
for negative displacements are analogous. 

Piston force balance with specimen load F : 

P1A1 − P2A2 = MU̇ + F (1) 

Cylinder flow equations with bulk modulus B and leakage coefficient cl: 

Q1 = A1U + 
V1 

Ṗ1 + (P1 − P2)cl (2a)
B 

Q2 = A2U − 
V2 

Ṗ2 + (P1 − P2)cl (2b)
B 

Valve orifice equations with valve constant Kv for positive spool displacements (X > 0): 

Q1 = KvX Ps − P1 (3a) 

Q2 = KvX P2 − Pr (3b) 

Spool dynamics relating demand signal W to spool displacement X: 

ω1
2e−sδ 

X = W (4) 
s2 + 2ζ1ω1s + ω2 

1 

3.2 Linearisation 

It is assumed that the actuator is symmetric, and the piston in centre position. The 
model is linearised for steady-state operation at a velocity U with static actuator force 
F . In this case, the piston acceleration is zero and flows Q1 and Q2 are equal. From (1) 
and (3): 

F 
P1 − P2 = and P1 + P2 = Ps + Pr (5)

A 
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therefore � � � � 
1 F 1 F 

P1 = Ps + Pr + and P2 = Ps + Pr − (6)
2 A 2 A 

Equating (2a) and (3a), and substituting (6) for P1, P2 leads to 

Ps − Pr −F/A F 
AU = KvX − cl (7)

2 A 

Using the small perturbation technique for the valve orifice equations (3) gives 

∂Q1 ∂Q1 
q1 = x + p1 = Cx1x − Cp1p1 (8a)

∂X ∂P1 

∂Q2 ∂Q2 
q2 = x + p2 = Cx2x + Cp2p2 (8b)

∂X ∂P2 

where the lower case symbols p, q, x represent small changes of pressure, flow, and spool 
displacement around the operating point chosen for linearisation. Considering (6), the 
linearisation coefficients can be expressed as 

Ps − Pr −F/A 
Cx := Cx1 = Cx2 = (9a)

2 
KvX 

Cp := Cp1 = Cp2 = � (9b)
2(Ps − Pr −F/A) 

Equating (8) with (2) for small perturbations in the cylinder flow equations, solving for 
p1, p2, and substituting the results into (1) leads to the linear second order actuator 
model 

2kACx x − s+k(Cp+2cl) fM M u = 
2kA2 (10) 

s2 + k(Cp + 2cl)s + M 

B Bwith stiffness coefficient k = = . The inputs x and f are small perturbations in V1 V2 

spool displacement and specimen force, respectively, and the output u represents small 
changes around the linearisation velocity. 
At zero force, 

Ps − Pr
Cx,F=0 = Kv (11)

2 

and 
Kvx (7) AU 

Cp,F=0 = � = (12)
2(Ps − Pr) Ps − Pr 

Normalising x so that it equates to steady-state actuator velocity gives 

Cx 
xv = x (13)

A 
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and substituting (12, 13) into (10) leads to the second order linear time-invariant actuator 
model � � 

s+k AU +2cl2kA2 Ps−Pr xv − fM M u = � � (14)
AU 2kA2 

s2 + k + 2cl s +Ps−Pr M 

With � � 
2kA2 kM kMc2 

lω2
2 = and ζ2 = ζ21U + ζ20 = U + (15)

M 8(Ps − Pr)2 2A2 

equation (14) can be written as 

1 s + 2ζ2ω2 
u = · ω2

2 xv − f (16) 
s2 + 2ζ2ω2 + ω2 M2 

3.3 Influence of Actuator Force 

With F �= 0, the linearisation coefficients depend on the actuator load and the valve spool 
displacement. A non-zero static actuator load changes the valve spool displacement – 
steady-state velocity relationship (13) to 

Cx(F) Kv Ps − Pr −F/A 
xv = x = x (17)

A A 2 

This can be split into a part for F = 0 and a force dependent factor r(F), which may be 
used to modify the gain (or lookup table) relating xv to x: 

Cx,F=0 F/A Kv Ps − Pr 
xv = r(F) · x = 1 − · x (18)

A Ps − Pr A 2 

The block diagram in Figure 3 shows the structure of the plant model including force 
dependent actuator model (16) and spool dynamics (4). The block with the nonlinear 
curve represents a calibration table relating steady-state drive signal to actuator velocity. 
In the simplest case, it is a constant gain as shown in equation (13). In practice, however, 
it is implemented as lookup table based on measured values for various operating points. 
This can account for valve nonlinearities, e.g. deadband due to spool overlap. 
The factor r(F) defined in equation (18) effectively implements the standard steady-

state square-root velocity/force characteristic of an hydraulic actuator. During a test, 
the load is not static of course, but increases rapidly when the specimen is gripped. Part 
of the specimen breaking energy comes from the decreasing inertial energy of the moving 
mass, hence only a fraction of the measured force is actually “seen” by the actuator. 
This is accounted for by the factor c1, which converts the actual measured force to an 
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equivalent steady-state force 
F = c1F (19) 

A value c1 = 0 implies that the specimen force has no effect on the pressures in the 
actuator, whereas c1 = 1 implies that inertial energy does not contribute at all to the 
breaking energy. In reality, c1 is larger at low velocities, and small at the higher end of 
the speed range. 
In case of Cp, a non-zero steady state actuator force changes equation (12) to 

AU + F clACp = (20)
− FPs − Pr A 

The damping coefficient ζ2 therefore increases with load, which is implied by equa
tion (10). This effect is not considered in the current implementation, because its influ
ence on the tracking error and ILC performance is significantly lower than that of the 
force dependent changes in steady state velocity. Furthermore, estimating ζ2 as a func
tion of steady state velocity and static force would cause difficulties during experimental 
parameter identification. It may be feasible in a lab environment, but the process is 
too complicated for commercial use. As a workaround, machine operators can slightly 
increase the value of ζ20 if strong specimen are tested. 

4 Linear Iterative Control 

An iterative controller calculates a new drive signal from measured motion and force data, 
so the linear model derived in the previous section must be discretised and inverted. A 
regular “forward” model is also derived for model identification and parameter tuning. 

4.1 Model Discretisation 

The first order force gain, which is only used in the forward model (c.f. Figure 3), is 
discretised with the Euler approximation s ≈ (1 − z−1)/Ts: 

s + 2ζ2ω2 (1 − z−1)/Ts + 2ζ2ω2 2ζ2ω2 
� 

1 − z−1 � 

≈ = 1 + (21)
M M M 2ζ2ω2Ts 

Discrete valve and actuator transfer functions are calculated to have the same pole 
positions and steady-state gain as the continuous time model. Using the pole mapping 
technique guarantees that there are no non-minimum phase zeros, which would cause 
instability in the inverse model. 
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Actuator dynamics: 

u(z) ba
A(z) = = (22)

xv(z) (1 − z−1esa1Ts )(1 − z−1esa2Ts ) 

Valve dynamics: 

x(z) bv
V (z) = = (23)

w(z) (1 − z−1esv1Ts )(1 − z−1esv2Ts ) 

sa1, sa2, sv1, sv2 are the complex poles of the continuous-time valve and actuator models 
(4, 16), and Ts is the sample interval. The gains ba and bv are set to give unity steady-
state gain. The pure dead time in the valve model is also replicated to the nearest sample 
interval by 

D(z) = z −Td (24) 

where Td is an integer chosen to yield 

Td ≈ 
δ 
Ts 

(25) 

4.2 Inverse Model Structure 

The block diagram in Figure 4 shows the structure of the inverse model. Inputs are 
demand velocity, measured velocity, and measured force. Velocity can be derived from 
zero-phase filtered LVDT position data. Fourth order Butterworth filters with cut-off 
frequencies between 300–500Hz are suitable, depending on the amount of noise. If accel
eration is also measured, then more accurate velocity information can be obtained using 
complementary filters [12, 13]. 
Demand velocity and measured velocity are passed independently through the inverse 

actuator model 
(1 − z−1esa1Ts )(1 − z−1esa2Ts )

A−1(z) = (26)
ba 

in order to ensure the correct operating point for the nonlinear gain relating steady-state 
velocity to drive signal voltage. The measurement is then subtracted from the demand 
to get the correction signal. This is multiplied by 1/r(F) to account for the reduced 
actuator speed under load, passed through the inverse valve model 

(1 − z−1esv1Ts )(1 − z−1esv2Ts )
V −1(z) = (27)

bv 

and shifted by Td samples. Finally, all samples outside the profiling window are set to 
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zero, and the resulting signal is passed through a phase compensated low-pass filter 

1 − p
L = , p = 0.7 (28)

1 − pz−1 

to make it less likely that the valve is driven into saturation. 

4.3 System Identification 

Valve spool dynamics (4) can be estimated from data sheets, and approximate actuator 
model parameters can be calculated with equation (15). These initial values must then 
be tuned by comparing the measured machine response with model output. Figure 5 
shows a graphical user interface developed for identification tasks. Appropriate steps 
are: 

1. Estimate model parameters from known physical values of the machine. 

2. Perform velocity calibration, i.e. tests without specimen and constant valve drive 
signals to determine nonlinear gain relating xv to x at zero load. 

3. Accelerate the piston and shut the valve when the cylinder is in mid-position. The 
resulting oscillations can be used to adjust ω2 and ζ20. 

4. Use square-wave drive signals around different mean velocities to adjust ζ21 and 
the valve model parameters. Valve dynamics dominate in these tests as the valve 
has lower bandwidth than the actuator. 

5. Perform some tests with different strength specimen for fine-tuning and adjusting 
load influence factor c1. 

It is advisable to check the match between model and plant before the first iteration, 
whenever the target velocity is changed, or a new type of specimen is tested (e.g. to 
adjust c1 depending on velocity and ζ20 depending on specimen strength, as discussed in 
Section 3.3). 

5 Nonlinear Learning Control 

Learning control using a nonlinear inverse model differs from the linear case in that the 
superposition principle does not apply. Hence, it is not possible to derive drive signal 
corrections, which are then added to the original drive signal. Instead, any perturbations 
have to be applied to the inputs of the inverse model. 
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5.1 Nonlinear Model Implementation 

The nonlinear forward and inverse models implement the equations 

Ps − P1 + A1U = 0 
V1 

Ṗ1 + cl(P1 − P2) − Kv1X (29a)

B
 
V2
 ˙ (29b)
P2 − cl(P1 − P2) + Kv2X 
B 

P1A1 − P2A2 − MU̇ − F = 0 

P2 − Pr − A2U = 0 

(29c)
 

which follow from (1–3) by eliminating Q1 and Q2. Valve spool dynamics are again 
represented by the linear second order model (4). The chamber volumes are dependent 
on cylinder displacement: 

V1 = V10 + A1Y and V2 = V20 − A2Y	 (30) 

and so is the supply pressure: 
Ps = Ps0 − daccY (31) 

V10, V20 are the chamber volumes at piston displacement Y = 0, Ps0 is the initial accu
mulator pressure, and dacc an accumulator discharge coefficient. The linear equation (31) 
ignores the adiabatic nature of the accumulator discharging process, but this is an ac
ceptable simplification in practice. 
For the forward model with inputs X(t) and F (t), (29) is a system of ordinary differ

ential equations (ODE) with solutions P1(t), P2(t), Y (t). The inverse model has inputs 
F (t), Y (t), U(t), U̇(t) and solutions P1(t), P2(t), X(t), which makes (29) a Hessenberg 
index-2 system of differential algebraic equations (DAE) in the form 

m	˙ = f(t, m, n) (32a) 

0 = g(t, m) (32b) 

with m = [P1, P2]
T , n = X. Differentiating (29c) with respect to time, substituting Ṗ1, 

Ṗ2 from (29a), (29b), and rearranging gives ⎡⎤⎡⎤⎡ ⎤
 
−cl(P1 − P2) + Kv1X 

√

˙	 BP1 1 0 0 − P1 − A1U 

cl(P1 − P2) − Kv2X P2 − Pr + A2U 

PsV1 √
⎢⎣
Ṗ2 
⎥⎦
=
 ⎢⎣
0 1 0
 

⎢⎣ 
⎥⎦ 

⎥⎦
B (33)

V2 

0 A1 −A2 1	 −MU ¨ − Ḟ

This reduces the problem to solving a semi-explicit DAE system of index 1 with nonsin-
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gular Jacobian gm: 

m	˙ = f(t, m, n) (34a) 

0 = g(t, m, n) (34b) 

Systems of the form (34) can be solved numerically with the standard Matlab solver ode
15s as well as with common directional block diagram languages like Simulink [14]. The 
price for this convenience is having to differentiate the force and motion inputs, which 
may necessitate rather aggressive filtering of measured data, depending on noise content. 

5.2 Drive Signal Calculation 

Initial parameters for the model are estimated from actual machine data. These can then 
be tuned with system identification procedures similar to those listed in Section 4.3. 
The first test run is carried out with a drive signal profile based on the steady-state 

voltage/velocity calibration data for the particular machine. In contrast to the linear 
approach, only the force data in conjunction with demand motion is used as input for 
the inverse model after the first trial. In theory, the output is a drive signal that maintains 
the demand motion under the influence of the measured force. Because the force profile 
will differ in subsequent tests due to the changed actuator velocity with the new drive 
signal, more than one iteration may be necessary. 
The residual error should be small, but even after multiple iterations with identical 

specimen, the result will not be accurate due to inherent model inaccuracies. There are 
two options to reduce this error: linearise the model and use the algorithm from Section 4 
for further iterations, or perturb the demand velocity input of the nonlinear inverse model 
with a fraction of the velocity error. Ultimately, the achievable tracking error for a given 
test is determined by physical limitations of the machine such as limited valve flow and 
slew rate. This is highlighted by the last equation in (33). The occurence of the force 
derivative Ḟ implies that very large actuator flows are required if the force changes 
rapidly. In general, fast valves, a stiff frame and actuation system, large accumulators, 
as well as large inertia of the moving parts are desirable characteristics for this type of 
testing machine. 

6 Algorithm Performance 

It is now examined whether considering the force influence improves the existing linear 
inverse controller, and how the nonlinear strategy compares with the linear method. 
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The main performance criteria are the velocity errors after up to three iterations, and 
the sensitivity to changes in operating conditions such as target velocity and specimen 
strength. Tests are simulated with a very detailed model of a high-rate machine, which 
has a rated maximum force of 100 kN and a rated maximum velocity of 20m/s [10]. Using 
simulation results rather than experimental data gives an idea of the upper performance 
limits, and has the advantage that conditions are repeatable – there are no differences 
in specimen strength, zero mounting tolerances, and no problems with varying machine 
parameters such as oil temperature, friction, and sensor noise. The simulation model is 
similar to the nonlinear forward model described in Section 5, but additionally accounts 
for limited valve slew rate, spool hysteresis, adiabatic accumulator discharging, as well 
as load cell and frame dynamics. The specimen has a simple velocity independent stress-
strain relationship. 
Simulations at target speeds of 2.5m/s and 5m/s were performed with specimen break

ing forces of 50 kN and 100 kN. Figure 6 shows the results of the initial runs with constant 
drive signals, which are used for iterations with the different algorithms. Crucial per
formance parameters are the maximum and arithmetic mean velocity errors defined by 

emax = max |Ui,actual − Ui,target| ∀ i : Fi > Fthreshold (35a)
i 

1 
emean = |Ui,actual − Ui,target| ∀ i : Fi > Fthreshold (35b)

n 
i 

where n is the number of samples for which the measured force is higher than a certain 
threshold, here set to 1 kN. 

Table 1 lists the errors for the initial run and three subsequent iteration steps with 
the following methods: linear algorithm without force compensation (c1 = 0), linear 
algorithm with force compensation (c1 > 0), and the nonlinear strategy. In the last 
case, the first two iterations were performed with force data alone. After two iterations 
with the nonlinear algorithm, two different methods were tried for the third one: using 
the nonlinear model with force data and perturbed velocity signal, and using the linear 
model with c1 = 0.5. 

First Iteration For the linear method, setting c1 = 1 gives the best results overall. In 
particular, the maximum errors are reduced significantly. The mean errors only vary 
with the stronger specimen. As expected, the nonlinear method is particularly beneficial 
at low velocities and high specimen strengths. In the other cases it gives similar results 
to linear control with force correction. 
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Second Iteration The linear algorithm converge quickly in all cases. The results with 
the nonlinear method are not improved by a second iteration step, which may be partly 
due to the fact that the specimen characteristics in these simulations are independent of 
velocity, hence the data fed into the inverse nonlinear model is virtually the same after 
the initial and the second run. 

Third Iteration Again, all tests with the linear method show good convergence. With 
c1 = 1, the maximum velocity errors are now under 20% of the original values with 
constant drive signal, which is a good result. In the nonlinear cases, perturbing the 
velocity demand in addition to considering the measured force is not effective. However, 
performing further iterations with the linear algorithm improves matters. 

Summary The presented linear and nonlinear learning control strategies reduce the 
maximum and mean velocity tracking errors of high strain rate tests. The linear method 
converges quickly, especially if the force influence is considered. This is an important 
fact in practice, where more than one or two iterations are often unacceptable due to the 
limited number of specimen. 
The nonlinear algorithm performs well with one iteration only. Subsequent steps do not 

lead to further error reductions if the specimen characteristics are velocity independent. 
Using it for the first step and then iterating with the linear model may be beneficial, 
especially at low velocities and high forces. 

7 Conclusions and Further Work 

A high-rate materials test requires accurate tracking of a specified velocity profile under 
the influence of high impact forces. The typical test duration measured from grabbing the 
specimen until its destruction lies in the region of 1–10ms. Inevitably, causal closed-loop 
velocity control methods fail due to signal latency, plant delays, and limited actuator 
bandwidth. 
Learning controllers, however, utilise error information from past tests to anticipate 

repeating disturbances and allow the preemptive modification of the drive signal. Linear 
and nonlinear strategies based on inverse plant models have been presented, and it has 
been shown that they reduce the tracking error significantly from the first repetition 
onwards. The linear iteration method, which feeds the velocity errors through an inverse 
model, is particularly useful if multiple iterations can be performed. The nonlinear 
method, which calculates a new drive signal based on force measurements and the target 

M Schlotter, AR Plummer 16 



Learning Control Strategies for High-Rate Materials Testing Machines
 

velocity profile, may be beneficial for the first iteration, especially if large velocity tracking 
errors are observed in the initial test. 
The algorithms are currently being implemented in commercial machines, and mea

sured results as well as user feedback will help to get an idea of what really works in 
practice, and what does not. Further work will focus on using ILC together with closed-
loop control for improved velocity tracking at low speeds. This will permit control of 
drive signal corrections by displacement rather than elapsed time from the start of the 
test, which eliminates errors caused by different run-up times. 
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Figure 1: Photograph and simplified hydraulic circuit of a materials testing machine.
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(a) Initial test with constant drive signal. (b) Results after first iteration. 

Figure 2: High strain rate tensile test of a steel specimen and a target velocity of 4m/s. 
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Figure 5: Graphical user interface for parameter tuning.
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Figure 6: Simulated tests with specimen breaking forces of 50 kN and 100 kN at two 
different target speeds. 
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(a) Maximum errors 

Target velocity 
Specimen Force 

2.5m/s 
50 kN 100 kN 

5m/s 
50 kN 100 kN 

Initial run 

It
er
at
io
n 
1 linear, c1 = 0 

linear, c1 = 0.5 
linear, c1 = 1 
nonlinear 

It
er
at
io
n 
2 linear, c1 = 0 

linear, c1 = 0.5 
linear, c1 = 1 
nonlinear 

It
er
at
io
n 
3 linear, c1 = 0 

linear, c1 = 0.5 
linear, c1 = 1 
nonlin. w/ vel. 
nonlin. w/ lin. 

1.45 (100%) 

0.70 (48.3%) 
0.67 (46.1%) 
0.63 (43.3%) 
0.70 (47.9%) 

0.43 (29.3%) 
0.40 (27.7%) 
0.37 (25.7%) 
0.87 (59.7%) 

0.30 (20.3%) 
0.29 (19.9%) 
0.29 (19.6%) 
0.82 (56.4%) 
0.84 (57.9%) 

2.73 (100%) 

1.60 (58.3%) 
1.46 (53.6%) 
1.28 (46.9%) 
0.94 (34.6%) 

1.02 (37.2%) 
0.91 (33.1%) 
0.75 (27.5%) 
0.98 (35.8%) 

0.70 (25.6%) 
0.62 (22.8%) 
0.53 (19.5%) 
0.96 (35.1%) 
0.62 (22.5%) 

1.63 (100%) 

0.68 (41.9%) 
0.64 (39.1%) 
0.58 (35.5%) 
0.59 (36.2%) 

0.39 (23.9%) 
0.36 (22.1%) 
0.33 (20.5%) 
0.59 (36.4%) 

0.27 (16.6%) 
0.27 (16.5%) 
0.27 (16.5%) 
0.65 (40.0%) 
0.46 (28.5%) 

3.28 (100%) 

1.60 (48.7%) 
1.39 (42.5%) 
1.05 (32.2%) 
1.10 (33.6%) 

0.97 (29.7%) 
0.82 (25.0%) 
0.61 (18.7%) 
1.01 (30.9%) 

0.67 (20.3%) 
0.57 (17.3%) 
0.45 (13.7%) 
1.05 (32.2%) 
0.72 (22.0%) 

(b) Arithmetic mean errors 

Target velocity 
Specimen Force 

2.5m/s 
50 kN 100 kN 

5m/s 
50 kN 100 kN 

Initial run 

It
er
at
io
n 
1 linear, c1 = 0 

linear, c1 = 0.5 
linear, c1 = 1 
nonlinear 

It
er
at
io
n 
2 linear, c1 = 0 

linear, c1 = 0.5 
linear, c1 = 1 
nonlinear 

It
er
at
io
n 
3 linear, c1 = 0 

linear, c1 = 0.5 
linear, c1 = 1 
nonlin. w/ vel. 
nonlin. w/ lin. 

0.53 (100%) 

0.24 (44.7%) 
0.23 (44.4%) 
0.23 (44.3%) 
0.37 (69.5%) 

0.17 (32.5%) 
0.17 (32.3%) 
0.17 (32.3%) 
0.29 (55.3%) 

0.13 (24.7%) 
0.13 (24.5%) 
0.13 (24.4%) 
0.26 (49.0%) 
0.22 (42.6%) 

1.10 (100%) 

0.49 (45.0%) 
0.42 (38.1%) 
0.36 (32.5%) 
0.45 (40.9%) 

0.31 (28.5%) 
0.30 (27.1%) 
0.32 (29.1%) 
0.38 (34.5%) 

0.25 (22.5%) 
0.25 (22.5%) 
0.26 (23.5%) 
0.34 (31.1%) 
0.29 (26.8%) 

0.98(100%) 

0.27 (27.7%) 
0.26 (26.8%) 
0.26 (27.1%) 
0.29 (29.4%) 

0.19 (19.8%) 
0.19 (19.9%) 
0.20 (20.1%) 
0.22 (22.1%) 

0.16 (16.3%) 
0.16 (16.2%) 
0.16 (15.9%) 
0.26 (26.5%) 
0.19 (19.8%) 

2.10 (100%) 

0.89 (42.2%) 
0.71 (33.7%) 
0.44 (21.0%) 
0.49 (23.2%) 

0.44 (21.1%) 
0.32 (15.4%) 
0.32 (15.2%) 
0.34 (16.2%) 

0.25 (12.0%) 
0.24 (11.2%) 
0.25 (11.9%) 
0.46 (22.0%) 
0.31 (14.6%) 

Table 1: Absolute velocity errors in (m/s) and relative errors compared to test with 
constant drive signal. 
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