114 research outputs found

    The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen.

    Get PDF
    The mechanism of formation of the formyl group of chlorophyll b has long been obscure but, in this paper, the origin of the 7-formyl-group oxygen of chlorophyll b in higher plants was determined by greening etiolated maize leaves, excised from dark-grown plants, by illumination under white light in the presence of either H218O or 18O2 and examining the newly synthesized chlorophylls by mass spectroscopy. To minimize the possible loss of 18O label from the 7-formyl substituent by reversible formation of chlorophyll b-71-gem-diol (hydrate) with unlabelled water in the cell, the formyl group was reduced to a hydroxymethyl group during extraction with methanol containing NaBH4: chlorophyll a remained unchanged during this rapid reductive extraction process. Mass spectra of chlorophyll a and [7-hydroxymethyl]-chlorophyll b extracted from leaves greened in the presence of either H218O or 18O2 revealed that 18O was incorporated only from molecular oxygen but into both chlorophylls: the mass spectra were consistent with molecular oxygen providing an oxygen atom not only for incorporation into the 7-formyl group of chlorophyll b but also for the well-documented incorporation into the 131-oxo group of both chlorophylls a and b [see Walker, C. J., Mansfield, K. E., Smith, K. M. & Castelfranco, P. A. (1989) Biochem. J. 257, 599–602]. The incorporation of isotope led to as much as 77% enrichment of the 131-oxo group of chlorophyll a: assuming identical incorporation into the 131 oxygen of chlorophyll b, then enrichment of the 7-formyl oxygen was as much as 93%. Isotope dilution by re-incorporation of photosynthetically produced oxygen from unlabelled water was negligible as shown by a greening experiment in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The high enrichment using 18O2, and the absence of labelling by H218O, unequivocally demonstrates that molecular oxygen is the sole precursor of the 7-formyl oxygen of chlorophyll b in higher plants and strongly suggests a single pathway for the formation of the chlorophyll b formyl group involving the participation of an oxygenase-type enzyme

    Origin of Saxitoxin Biosynthetic Genes in Cyanobacteria

    Get PDF
    BACKGROUND:Paralytic shellfish poisoning (PSP) is a potentially fatal syndrome associated with the consumption of shellfish that have accumulated saxitoxin (STX). STX is produced by microscopic marine dinoflagellate algae. Little is known about the origin and spread of saxitoxin genes in these under-studied eukaryotes. Fortuitously, some freshwater cyanobacteria also produce STX, providing an ideal model for studying its biosynthesis. Here we focus on saxitoxin-producing cyanobacteria and their non-toxic sisters to elucidate the origin of genes involved in the putative STX biosynthetic pathway. METHODOLOGY/PRINCIPAL FINDINGS:We generated a draft genome assembly of the saxitoxin-producing (STX+) cyanobacterium Anabaena circinalis ACBU02 and searched for 26 candidate saxitoxin-genes (named sxtA to sxtZ) that were recently identified in the toxic strain Cylindrospermopsis raciborskii T3. We also generated a draft assembly of the non-toxic (STX-) sister Anabaena circinalis ACFR02 to aid the identification of saxitoxin-specific genes. Comparative phylogenomic analyses revealed that nine putative STX genes were horizontally transferred from non-cyanobacterial sources, whereas one key gene (sxtA) originated in STX+ cyanobacteria via two independent horizontal transfers followed by fusion. In total, of the 26 candidate saxitoxin-genes, 13 are of cyanobacterial provenance and are monophyletic among the STX+ taxa, four are shared amongst STX+ and STX-cyanobacteria, and the remaining nine genes are specific to STX+ cyanobacteria. CONCLUSIONS/SIGNIFICANCE:Our results provide evidence that the assembly of STX genes in ACBU02 involved multiple HGT events from different sources followed presumably by coordination of the expression of foreign and native genes in the common ancestor of STX+ cyanobacteria. The ability to produce saxitoxin was subsequently lost multiple independent times resulting in a nested relationship of STX+ and STX- strains among Anabaena circinalis strains

    Discovery of Nuclear-Encoded Genes for the Neurotoxin Saxitoxin in Dinoflagellates

    Get PDF
    Saxitoxin is a potent neurotoxin that occurs in aquatic environments worldwide. Ingestion of vector species can lead to paralytic shellfish poisoning, a severe human illness that may lead to paralysis and death. In freshwaters, the toxin is produced by prokaryotic cyanobacteria; in marine waters, it is associated with eukaryotic dinoflagellates. However, several studies suggest that saxitoxin is not produced by dinoflagellates themselves, but by co-cultured bacteria. Here, we show that genes required for saxitoxin synthesis are encoded in the nuclear genomes of dinoflagellates. We sequenced >1.2×106 mRNA transcripts from the two saxitoxin-producing dinoflagellate strains Alexandrium fundyense CCMP1719 and A. minutum CCMP113 using high-throughput sequencing technology. In addition, we used in silico transcriptome analyses, RACE, qPCR and conventional PCR coupled with Sanger sequencing. These approaches successfully identified genes required for saxitoxin-synthesis in the two transcriptomes. We focused on sxtA, the unique starting gene of saxitoxin synthesis, and show that the dinoflagellate transcripts of sxtA have the same domain structure as the cyanobacterial sxtA genes. But, in contrast to the bacterial homologs, the dinoflagellate transcripts are monocistronic, have a higher GC content, occur in multiple copies, contain typical dinoflagellate spliced-leader sequences and eukaryotic polyA-tails. Further, we investigated 28 saxitoxin-producing and non-producing dinoflagellate strains from six different genera for the presence of genomic sxtA homologs. Our results show very good agreement between the presence of sxtA and saxitoxin-synthesis, except in three strains of A. tamarense, for which we amplified sxtA, but did not detect the toxin. Our work opens for possibilities to develop molecular tools to detect saxitoxin-producing dinoflagellates in the environment

    Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of coastal nutrient sources in the persistence of <it>Karenia brevis </it>red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' <it>trans</it>-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of <it>K. brevis </it>is responsive to nitrogen and phosphorus and is informative of nutrient status.</p> <p>Results</p> <p>Microarray analysis of N-depleted <it>K. brevis </it>cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10<sup>-4</sup>. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes.</p> <p>Conclusions</p> <p>Microarray analysis provided transcriptomic evidence for N- but not P-limitation in <it>K. brevis</it>. Transcriptomic responses to the addition of either N or P suggest a concerted program leading to the reactivation of chloroplast functions. Even the earliest responding PPR protein transcripts possess a 5' SL sequence that suggests post-transcriptional control. Given the current state of knowledge of dinoflagellate gene regulation, it is currently unclear how these rapid changes in such transcript levels are achieved.</p

    Light-Harvesting Chlorophyll a/b Complexes: Interdependent Pigment Synthesis and Protein Assembly.

    No full text
    The biogenetic interdependence of light-harvesting chlorophyll (Chl) a/b proteins (LHCPs) and antenna pigments has been analyzed for two nuclear mutants of Chlamydomonas that have low levels of Chl b, neoxanthin, and loroxanthin. In mutant PA2.1, the apoprotein precursors (pLHCP II) of the major light-harvesting complex LHC II were synthesized at approximately wild-type rates, processed to their mature size, and rapidly degraded. Because the bulk of labile LHCP II in PA2.1 was soluble, a thylakoid integration factor apparently is defective in this strain. Chl a, Chl b, neoxanthin, and loroxanthin synthesis and accumulation were coordinately reduced in PA2.1, indicating that LHCP II play important regulatory or substrate roles in de novo synthesis of these pigments. Mutant GE2.27 is impaired principally in Chl b synthesis but nonetheless accumulated wild-type levels of all LHCPs. Topology studies of the GE2.27 LHCP II demonstrated that their insertion into thylakoids was incomplete even though they were not structurally altered. Thus, Chl b formation mediates conformational changes of LHCP II after thylakoid integration is initiated. GE2.27 also exhibited very low rates of neoxanthin synthesis and was unable to accumulate loroxanthin. Revertant GE2.27 strains with varying capacities for Chl b formation provided additional evidence that neoxanthin synthesis and accumulation are coupled with the final steps of LHCP II integration into thylakoids. We propose that biogenesis of LHC includes interdependent pigment synthesis/assembly events that occur during LHCP integration into the thylakoid membrane and that defects in these events account for the pleiotropic characteristics of many Chl b-deficient mutants

    Nitrogen-dependent regulation of photosynthetic gene expression

    No full text

    Analytical model to determine aft-end igniter design parameters

    No full text
    corecore