1,467 research outputs found

    The magnetic connectivity of coronal shocks from behind-the-limb flares to the visible solar surface during γ\gamma-ray events

    Full text link
    Context. The observation of >100 MeV {\gamma}-rays in the minutes to hours following solar flares suggests that high-energy particles interacting in the solar atmosphere can be stored and/or accelerated for long time periods. The occasions when {\gamma}-rays are detected even when the solar eruptions occurred beyond the solar limb as viewed from Earth provide favorable viewing conditions for studying the role of coronal shocks driven by coronal mass ejections (CMEs) in the acceleration of these particles. Aims: In this paper, we investigate the spatial and temporal evolution of the coronal shocks inferred from stereoscopic observations of behind-the-limb flares to determine if they could be the source of the particles producing the {\gamma}-rays. Methods: We analyzed the CMEs and early formation of coronal shocks associated with {\gamma}-ray events measured by the Fermi-Large Area Telescope (LAT) from three eruptions behind the solar limb as viewed from Earth on 2013 Oct. 11, 2014 Jan. 06 and Sep. 01. We used a 3D triangulation technique, based on remote-sensing observations to model the expansion of the CME shocks from above the solar surface to the upper corona. Coupling the expansion model to various models of the coronal magnetic field allowed us to derive the time-dependent distribution of shock Mach numbers and the magnetic connection of particles produced by the shock to the solar surface visible from Earth. Results: The reconstructed shock fronts for the three events became magnetically connected to the visible solar surface after the start of the flare and just before the onset of the >100 MeV {\gamma}-ray emission. The shock surface at these connections also exhibited supercritical Mach numbers required for significant particle energization. [...] (Abridged)Comment: 20 pages, 15 figures, version published in A&

    Small divisor problem in the theory of three-dimensional water gravity waves

    Get PDF
    We consider doubly-periodic travelling waves at the surface of an infinitely deep perfect fluid, only subjected to gravity gg and resulting from the nonlinear interaction of two simply periodic travelling waves making an angle 2θ2\theta between them. \newline Denoting by μ=gL/c2\mu =gL/c^{2} the dimensionless bifurcation parameter (LL is the wave length along the direction of the travelling wave and cc is the velocity of the wave), bifurcation occurs for μ=cosθ\mu =\cos \theta. For non-resonant cases, we first give a large family of formal three-dimensional gravity travelling waves, in the form of an expansion in powers of the amplitudes of two basic travelling waves. "Diamond waves" are a particular case of such waves, when they are symmetric with respect to the direction of propagation.\newline \emph{The main object of the paper is the proof of existence} of such symmetric waves having the above mentioned asymptotic expansion. Due to the \emph{occurence of small divisors}, the main difficulty is the inversion of the linearized operator at a non trivial point, for applying the Nash Moser theorem. This operator is the sum of a second order differentiation along a certain direction, and an integro-differential operator of first order, both depending periodically of coordinates. It is shown that for almost all angles θ\theta , the 3-dimensional travelling waves bifurcate for a set of "good" values of the bifurcation parameter having asymptotically a full measure near the bifurcation curve in the parameter plane (θ,μ).(\theta ,\mu ).Comment: 119

    Current-driven filamentation upstream of magnetized relativistic collisionless shocks

    Full text link
    The physics of instabilities in the precursor of relativistic collisionless shocks is of broad importance in high energy astrophysics, because these instabilities build up the shock, control the particle acceleration process and generate the magnetic fields in which the accelerated particles radiate. Two crucial parameters control the micro-physics of these shocks: the magnetization of the ambient medium and the Lorentz factor of the shock front; as of today, much of this parameter space remains to be explored. In the present paper, we report on a new instability upstream of electron-positron relativistic shocks and we argue that this instability shapes the micro-physics at moderate magnetization levels and/or large Lorentz factors. This instability is seeded by the electric current carried by the accelerated particles in the shock precursor as they gyrate around the background magnetic field. The compensation current induced in the background plasma leads to an unstable configuration, with the appearance of charge neutral filaments carrying a current of the same polarity, oriented along the perpendicular current. This ``current-driven filamentation'' instability grows faster than any other instability studied so far upstream of relativistic shocks, with a growth rate comparable to the plasma frequency. Furthermore, the compensation of the current is associated with a slow-down of the ambient plasma as it penetrates the shock precursor (as viewed in the shock rest frame). This slow-down of the plasma implies that the ``current driven filamentation'' instability can grow for any value of the shock Lorentz factor, provided the magnetization \sigma <~ 10^{-2}. We argue that this instability explains the results of recent particle-in-cell simulations in the mildly magnetized regime.Comment: 14 pages, 8 figures; to appear in MNRA

    THE LARGEST OPEN PIT MINES IN THE WORLD

    Get PDF

    On shape optimization for compressible isothermal Navier-Stokes equations

    Get PDF
    The steady state system of isothermal Navier-Stokes equations is considered in two dimensional domain including an obstacle. The shape optimisation problem of drag minimisation with respect to the admissible shape of the obstacle is defined. The generalized solutions for the Navier-Stokes equations are introduced. The existence of an optimal shape is proved in the class of admissible domains. In general the solution to the problem under consideration is not unique

    Investigation of parameters variation of speed controller on the frequency responses in vector automatic control system

    Full text link
    The article considers the method of adjusting the frequency converter on preset quality parameters of transients. Regulation is carried out by means of changing the parameters of proportional-integral speed controller at constant performance of closed-loop current controller. Influence of parameters the proportional-integral speed controller on frequency response of vector control system is shown. Results of the simulation and experimental investigations based on the frequency converter Siemens Sinamics S120 are given. Recommendations for adjust settings of closed-loop speed controller of the vector control system at different performance are proposed as a conclusion.В статье рассматривается методика настройки преобразователя частоты на заданные показатели качества переходного процесса. Регулирование происходит за счет изменения параметров пропорционально интегрального регулятора скорости при неизменном быстродействии контура тока. Показано влияние параметров ПИ регулятора скорости на частотные характеристики векторной системы управления и показатели качества переходных процессов. Приводятся результаты моделирования и экспериментальных исследований на базе преобразователя частоты Siemens Sinamics S120. В качестве вывода предложены рекомендации для настройки контура скорости векторных систем управления с различным быстродействием

    Selection of power module and development of the circuits for frequency-controlled electric drive with microprocessor control system

    Full text link
    This article is devoted to the creation of a test bench for the study of algorithms and control systems for frequency-controlled electric drive with microprocessor control based on the digital signal processor TMS320F28335. The requirements for choosing of the power module are formulated. The development of circuits for adaptation of logic signals levels is described.В данной статье представлена работа по созданию испытательного стенда для изучения алгоритмов и систем управления частотно-регулируемым электроприводом с микропроцессорным управлением на базе цифрового сигнального процессора TMS320F28335. Рассматриваются требования к выбору силовой части. Проводится разработка схем для согласования уровней логических сигналов

    Anomalous Behavior near T_c and Synchronization of Andreev Reflection in Two-Dimensional Arrays of SNS Junctions

    Full text link
    We have investigated low-temperature transport properties of two-dimensional arrays of superconductor--normal-metal--superconductor (SNS) junctions. It has been found that in two-dimensional arrays of SNS junctions (i) a change in the energy spectrum within an interval of the order of the Thouless energy is observed even when the thermal broadening far exceeds the Thouless energy for a single SNS junction; (ii) the manifestation of the subharmonic energy gap structure (SGS) with high harmonic numbers is possible even if the energy relaxation length is smaller than that required for the realization of a multiple Andreev reflection in a single SNS junction. These results point to the synchronization of a great number of SNS junctions. A mechanism of the SGS origin in two-dimensional arrays of SNS junctions, involving the processes of conventional and crossed Andreev reflection, is proposed.Comment: 5 pages, 5 figure

    Two-dimensional array of diffusive SNS junctions with high-transparent interfaces

    Full text link
    We report the first comparative study of the properties of two-dimensional arrays and single superconducting film - normal wire - superconducting film (SNS) junctions. The NS interfaces of our SNS junctions are really high transparent, for superconducting and normal metal parts are made from the same material (superconducting polycrystalline PtSi film). We have found that the two-dimensional arrays reveal some novel features: (i) the significant narrowing of the zero bias anomaly (ZBA) in comparison with single SNS junctions, (ii) the appearance of subharmonic energy gap structure (SGS), with up to n=16 (eV=\pm 2\Delta/n), with some numbers being lost, (iii) the transition from 2D logarithmic weak localization behavior to metallic one. Our experiments show that coherent phenomena governed by the Andreev reflection are not only maintained over the macroscopic scale but manifest novel pronounced effects as well. The behavior of the ZBA and SGS in 2D array of SNS junctions strongly suggests that the development of a novel theoretical approach is needed which would self-consistently take into account the distribution of the currents, the potentials, and the superconducting order parameter.Comment: RevTex, 5 pages, 5 figure

    Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona

    Get PDF
    The origin of the slow solar wind is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute one of the main sources of the slow wind. Determining the height at which these transients are released is an important factor in determining the conditions under which the slow solar wind forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north-south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. Combining the remote-sensing observations taken by the Solar-TErrestrial RElations Observatory (STEREO) mission with coronagraphic observations from the SOlar and Heliospheric Observatory (SOHO) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of transient structures collapsing back toward the Sun; the latter have been referred to by previous authors as "raining inflows." This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection.Peer reviewe
    corecore