1,467 research outputs found
The magnetic connectivity of coronal shocks from behind-the-limb flares to the visible solar surface during -ray events
Context. The observation of >100 MeV {\gamma}-rays in the minutes to hours
following solar flares suggests that high-energy particles interacting in the
solar atmosphere can be stored and/or accelerated for long time periods. The
occasions when {\gamma}-rays are detected even when the solar eruptions
occurred beyond the solar limb as viewed from Earth provide favorable viewing
conditions for studying the role of coronal shocks driven by coronal mass
ejections (CMEs) in the acceleration of these particles.
Aims: In this paper, we investigate the spatial and temporal evolution of the
coronal shocks inferred from stereoscopic observations of behind-the-limb
flares to determine if they could be the source of the particles producing the
{\gamma}-rays.
Methods: We analyzed the CMEs and early formation of coronal shocks
associated with {\gamma}-ray events measured by the Fermi-Large Area Telescope
(LAT) from three eruptions behind the solar limb as viewed from Earth on 2013
Oct. 11, 2014 Jan. 06 and Sep. 01. We used a 3D triangulation technique, based
on remote-sensing observations to model the expansion of the CME shocks from
above the solar surface to the upper corona. Coupling the expansion model to
various models of the coronal magnetic field allowed us to derive the
time-dependent distribution of shock Mach numbers and the magnetic connection
of particles produced by the shock to the solar surface visible from Earth.
Results: The reconstructed shock fronts for the three events became
magnetically connected to the visible solar surface after the start of the
flare and just before the onset of the >100 MeV {\gamma}-ray emission. The
shock surface at these connections also exhibited supercritical Mach numbers
required for significant particle energization.
[...] (Abridged)Comment: 20 pages, 15 figures, version published in A&
Small divisor problem in the theory of three-dimensional water gravity waves
We consider doubly-periodic travelling waves at the surface of an infinitely
deep perfect fluid, only subjected to gravity and resulting from the
nonlinear interaction of two simply periodic travelling waves making an angle
between them. \newline Denoting by the dimensionless
bifurcation parameter ( is the wave length along the direction of the
travelling wave and is the velocity of the wave), bifurcation occurs for
. For non-resonant cases, we first give a large family of
formal three-dimensional gravity travelling waves, in the form of an expansion
in powers of the amplitudes of two basic travelling waves. "Diamond waves" are
a particular case of such waves, when they are symmetric with respect to the
direction of propagation.\newline \emph{The main object of the paper is the
proof of existence} of such symmetric waves having the above mentioned
asymptotic expansion. Due to the \emph{occurence of small divisors}, the main
difficulty is the inversion of the linearized operator at a non trivial point,
for applying the Nash Moser theorem. This operator is the sum of a second order
differentiation along a certain direction, and an integro-differential operator
of first order, both depending periodically of coordinates. It is shown that
for almost all angles , the 3-dimensional travelling waves bifurcate
for a set of "good" values of the bifurcation parameter having asymptotically a
full measure near the bifurcation curve in the parameter plane Comment: 119
Current-driven filamentation upstream of magnetized relativistic collisionless shocks
The physics of instabilities in the precursor of relativistic collisionless
shocks is of broad importance in high energy astrophysics, because these
instabilities build up the shock, control the particle acceleration process and
generate the magnetic fields in which the accelerated particles radiate. Two
crucial parameters control the micro-physics of these shocks: the magnetization
of the ambient medium and the Lorentz factor of the shock front; as of today,
much of this parameter space remains to be explored. In the present paper, we
report on a new instability upstream of electron-positron relativistic shocks
and we argue that this instability shapes the micro-physics at moderate
magnetization levels and/or large Lorentz factors. This instability is seeded
by the electric current carried by the accelerated particles in the shock
precursor as they gyrate around the background magnetic field. The compensation
current induced in the background plasma leads to an unstable configuration,
with the appearance of charge neutral filaments carrying a current of the same
polarity, oriented along the perpendicular current. This ``current-driven
filamentation'' instability grows faster than any other instability studied so
far upstream of relativistic shocks, with a growth rate comparable to the
plasma frequency. Furthermore, the compensation of the current is associated
with a slow-down of the ambient plasma as it penetrates the shock precursor (as
viewed in the shock rest frame). This slow-down of the plasma implies that the
``current driven filamentation'' instability can grow for any value of the
shock Lorentz factor, provided the magnetization \sigma <~ 10^{-2}. We argue
that this instability explains the results of recent particle-in-cell
simulations in the mildly magnetized regime.Comment: 14 pages, 8 figures; to appear in MNRA
On shape optimization for compressible isothermal Navier-Stokes equations
The steady state system of isothermal Navier-Stokes equations is considered in two dimensional domain including an obstacle. The shape optimisation problem of drag minimisation with respect to the admissible shape of the obstacle is defined. The generalized solutions for the Navier-Stokes equations are introduced. The existence of an optimal shape is proved in the class of admissible domains. In general the solution to the problem under consideration is not unique
Investigation of parameters variation of speed controller on the frequency responses in vector automatic control system
The article considers the method of adjusting the frequency converter on preset quality parameters of transients. Regulation is carried out by means of changing the parameters of proportional-integral speed controller at constant performance of closed-loop current controller. Influence of parameters the proportional-integral speed controller on frequency response of vector control system is shown. Results of the simulation and experimental investigations based on the frequency converter Siemens Sinamics S120 are given. Recommendations for adjust settings of closed-loop speed controller of the vector control system at different performance are proposed as a conclusion.В статье рассматривается методика настройки преобразователя частоты на заданные показатели качества переходного процесса. Регулирование происходит за счет изменения параметров пропорционально интегрального регулятора скорости при неизменном быстродействии контура тока. Показано влияние параметров ПИ регулятора скорости на частотные характеристики векторной системы управления и показатели качества переходных процессов. Приводятся результаты моделирования и экспериментальных исследований на базе преобразователя частоты Siemens Sinamics S120. В качестве вывода предложены рекомендации для настройки контура скорости векторных систем управления с различным быстродействием
Selection of power module and development of the circuits for frequency-controlled electric drive with microprocessor control system
This article is devoted to the creation of a test bench for the study of algorithms and control systems for frequency-controlled electric drive with microprocessor control based on the digital signal processor TMS320F28335. The requirements for choosing of the power module are formulated. The development of circuits for adaptation of logic signals levels is described.В данной статье представлена работа по созданию испытательного стенда для изучения алгоритмов и систем управления частотно-регулируемым электроприводом с микропроцессорным управлением на базе цифрового сигнального процессора TMS320F28335. Рассматриваются требования к выбору силовой части. Проводится разработка схем для согласования уровней логических сигналов
Anomalous Behavior near T_c and Synchronization of Andreev Reflection in Two-Dimensional Arrays of SNS Junctions
We have investigated low-temperature transport properties of two-dimensional
arrays of superconductor--normal-metal--superconductor (SNS) junctions. It has
been found that in two-dimensional arrays of SNS junctions (i) a change in the
energy spectrum within an interval of the order of the Thouless energy is
observed even when the thermal broadening far exceeds the Thouless energy for a
single SNS junction; (ii) the manifestation of the subharmonic energy gap
structure (SGS) with high harmonic numbers is possible even if the energy
relaxation length is smaller than that required for the realization of a
multiple Andreev reflection in a single SNS junction. These results point to
the synchronization of a great number of SNS junctions. A mechanism of the SGS
origin in two-dimensional arrays of SNS junctions, involving the processes of
conventional and crossed Andreev reflection, is proposed.Comment: 5 pages, 5 figure
Two-dimensional array of diffusive SNS junctions with high-transparent interfaces
We report the first comparative study of the properties of two-dimensional
arrays and single superconducting film - normal wire - superconducting film
(SNS) junctions. The NS interfaces of our SNS junctions are really high
transparent, for superconducting and normal metal parts are made from the same
material (superconducting polycrystalline PtSi film). We have found that the
two-dimensional arrays reveal some novel features: (i) the significant
narrowing of the zero bias anomaly (ZBA) in comparison with single SNS
junctions, (ii) the appearance of subharmonic energy gap structure (SGS), with
up to n=16 (eV=\pm 2\Delta/n), with some numbers being lost, (iii) the
transition from 2D logarithmic weak localization behavior to metallic one. Our
experiments show that coherent phenomena governed by the Andreev reflection are
not only maintained over the macroscopic scale but manifest novel pronounced
effects as well. The behavior of the ZBA and SGS in 2D array of SNS junctions
strongly suggests that the development of a novel theoretical approach is
needed which would self-consistently take into account the distribution of the
currents, the potentials, and the superconducting order parameter.Comment: RevTex, 5 pages, 5 figure
Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona
The origin of the slow solar wind is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute one of the main sources of the slow wind. Determining the height at which these transients are released is an important factor in determining the conditions under which the slow solar wind forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north-south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. Combining the remote-sensing observations taken by the Solar-TErrestrial RElations Observatory (STEREO) mission with coronagraphic observations from the SOlar and Heliospheric Observatory (SOHO) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of transient structures collapsing back toward the Sun; the latter have been referred to by previous authors as "raining inflows." This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection.Peer reviewe
- …
