238 research outputs found

    The TANAMI Program

    Get PDF
    TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry) is a monitoring program to study the parsec-scale structures and dynamics of relativistic jets in active galactic nuclei (AGN) of the Southern Hemisphere with the Long Baseline Array and associated telescopes. Extragalactic jets south of -30 degrees declination are observed at 8.4 GHz and 22 GHz every two months at milliarcsecond resolution. The initial TANAMI sample is a hybrid radio and gamma-ray selected sample since the combination of VLBI and gamma-ray observations is crucial to understand the broadband emission characteristics of AGN.Comment: Confernce Proceedings for "X-ray Astronomy 2009" (Bologna), 3 pages, 3 figures, needs cls-fil

    Wristband accelerometers to motivate arm exercise after stroke (WAVES): study protocol for a pilot randomized controlled trial

    Get PDF
    BACKGROUND: Loss of upper limb function affects up to 85 % of acute stroke patients. Recovery of upper limb function requires regular intensive practise of specific upper limb tasks. To enhance intensity of practice interventions are being developed to encourage patients to undertake self-directed exercise practice. Most interventions do not translate well into everyday activities and stroke patients continue to find it difficult remembering integration of upper limb movements into daily activities. A wrist-worn device has been developed that monitors and provides ‘live’ upper limb activity feedback to remind patients to use their stroke arm in daily activities (The CueS wristband). The aim of this trial is to assess the feasibility of a multi-centre, observer blind, pilot randomised controlled trial of the CueS wristband in clinical stroke services. METHODS/DESIGN: This pilot randomised controlled feasibility trial aims to recruit 60 participants over 15 months from North East England. Participants will be within 3 months of stroke which has caused new reduced upper limb function and will still be receiving therapy. Each participant will be randomised to an intervention or control group. Intervention participants will wear a CueS wristband (between 8 am and 8 pm) providing “live” feedback towards pre-set movement goals through a simple visual display and vibration prompts whilst undertaking a 4-week upper limb therapy programme (reviewed twice weekly by an occupational/physiotherapist). Control participants will also complete the 4-week upper limb therapy programme but will wear a ‘sham’ CueS wristband that monitors upper limb activity but provides no feedback. Outcomes will determine study feasibility in terms of recruitment, retention, adverse events, adherence and collection of descriptive clinical and accelerometer motor performance data at baseline, 4 weeks and 8 weeks. DISCUSSION: The WAVES study will address an important gap in the evidence base by reporting the feasibility of undertaking an evaluation of emerging and affordable technology to encourage impaired upper limb activity after stroke. The study will establish whether the study protocol can be supported by clinical stroke services, thereby informing the design of a future multi-centre randomised controlled trial of clinical and cost-effectiveness. TRIAL REGISTRATION: ISRCTN:82306027. Registered 12 July 2016. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13063-016-1628-2) contains supplementary material, which is available to authorized users

    Petunia Floral Defensins with Unique Prodomains as Novel Candidates for Development of Fusarium Wilt Resistance in Transgenic Banana Plants

    Get PDF
    Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C- terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium–mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana

    The Nuclear Protein Sge1 of Fusarium oxysporum Is Required for Parasitic Growth

    Get PDF
    Dimorphism or morphogenic conversion is exploited by several pathogenic fungi and is required for tissue invasion and/or survival in the host. We have identified a homolog of a master regulator of this morphological switch in the plant pathogenic fungus Fusarium oxysporum f. sp. lycopersici. This non-dimorphic fungus causes vascular wilt disease in tomato by penetrating the plant roots and colonizing the vascular tissue. Gene knock-out and complementation studies established that the gene for this putative regulator, SGE1 (SIX Gene Expression 1), is essential for pathogenicity. In addition, microscopic analysis using fluorescent proteins revealed that Sge1 is localized in the nucleus, is not required for root colonization and penetration, but is required for parasitic growth. Furthermore, Sge1 is required for expression of genes encoding effectors that are secreted during infection. We propose that Sge1 is required in F. oxysporum and other non-dimorphic (plant) pathogenic fungi for parasitic growth

    Noncovalent Interactions of Hydrated DNA and RNA Mapped by 2D-IR Spectroscopy

    Full text link
    Biomolecules couple to their aqueous environment through a variety of noncovalent interactions. Local structures at the surface of DNA and RNA are frequently determined by hydrogen bonds with water molecules, complemented by non-specific electrostatic and many-body interactions. Structural fluctuations of the water shell result in fluctuating Coulomb forces on polar and/or ionic groups of the biomolecular structure and in a breaking and reformation of hydrogen bonds. Two-dimensional infrared (2D-IR) spectroscopy of vibrational modes of DNA and RNA gives insight into local hydration geometries, elementary molecular dynamics, and the mechanisms behind them. In this chapter, recent results from 2D-IR spectroscopy of native and artificial DNA and RNA are presented, together with theoretical calculations of molecular couplings and molecular dynamics simulations. Backbone vibrations of DNA and RNA are established as sensitive noninvasive probes of the complex behavior of hydrated helices. The results reveal the femtosecond fluctuation dynamics of the water shell, the short-range character of Coulomb interactions, and the strength and fluctuation amplitudes of interfacial electric fields.Comment: To appear as Chapter 8 of Springer Series in Optical Sciences: Coherent Multidimensional Spectroscopy -- Editors: Cho, Minhaeng (Ed.), 201

    Recent advances in understanding the roles of whole genome duplications in evolution

    Get PDF
    Ancient whole-genome duplications (WGDs)—paleopolyploidy events—are key to solving Darwin’s ‘abominable mystery’ of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life

    Cadophora margaritata sp. nov. and other fungi associated with the longhorn beetles Anoplophora glabripennis and Saperda carcharias in Finland

    Get PDF
    Symbiosis with microbes is crucial for survival and development of wood-inhabiting longhorn beetles (Coleoptera: Cerambycidae). Thus, knowledge of the endemic fungal associates of insects would facilitate risk assessment in cases where a new invasive pest occupies the same ecological niche. However, the diversity of fungi associated with insects remains poorly understood. The aim of this study was to investigate fungi associated with the native large poplar longhorn beetle (Saperda carcharias) and the recently introduced Asian longhorn beetle (Anoplophora glabripennis) infesting hardwood trees in Finland. We studied the cultivable fungal associates obtained from Populus tremula colonised by S. carcharias, and Betula pendula and Salix caprea infested by A. glabripennis, and compared these to the samples collected from intact wood material. This study detected a number of plant pathogenic and saprotrophic fungi, and species with known potential for enzymatic degradation of wood components. Phylogenetic analyses of the most commonly encountered fungi isolated from the longhorn beetles revealed an association with fungi residing in the Cadophora-Mollisia species complex. A commonly encountered fungus was Cadophora spadicis, a recently described fungus associated with wood-decay. In addition, a novel species of Cadophora, for which the name Cadophora margaritata sp. nov. is provided, was isolated from the colonised wood.Peer reviewe

    Разработка схемы очистки сточных вод от нефтепродуктов

    Get PDF
    В дипломной работе рассмотрены происхождение, состав, показатели качества сточных вод, методы очистки сточных вод от нефтепродуктов. Проведены исследования качества сточных вод. Разработаны наиболее эффективные методы очистки сточных вод от нефтепродуктов.The thesis examines the origin, composition, quality indicators of wastewater, methods of wastewater treatment from petroleum products. Research wastewater quality water The most effective methods for treating wastewater from oil products have been developed
    corecore