31 research outputs found
Exploring the Use of Fruit Callus Culture as a Model System to Study Color Development and Cell Wall Remodeling during Strawberry Fruit Ripening
Cell cultures derived from strawberry fruit at different developmental stages have been obtained to evaluate their potential use to study different aspects of strawberry ripening. Callus from leaf and cortical tissue of unripe-green, white, and mature-red strawberry fruits were induced in a medium supplemented with 11.3 µM 2,4-dichlorophenoxyacetic acid (2,4-D) under darkness. The transfer of the established callus from darkness to light induced the production of anthocyanin. The replacement of 2,4-D by abscisic acid (ABA) noticeably increased anthocyanin accumulation in green-fruit callus. Cell walls were isolated from the different fruit cell lines and from fruit receptacles at equivalent developmental stages and sequentially fractionated to obtain fractions enriched in soluble pectins, ester bound pectins, xyloglucans (XG), and matrix glycans tightly associated with cellulose microfibrils. These fractions were analyzed by cell wall carbohydrate microarrays. In fruit receptacle samples, pectins were abundant in all fractions, including those enriched in matrix glycans. The amount of pectin increased from green to white stage, and later these carbohydrates were solubilized in red fruit. Apparently, XG content was similar in white and red fruit, but the proportion of galactosylated XG increased in red fruit. Cell wall fractions from callus cultures were enriched in extensin and displayed a minor amount of pectins. Stronger signals of extensin Abs were detected in sodium carbonate fraction, suggesting that these proteins could be linked to pectins. Overall, the results obtained suggest that fruit cell lines could be used to analyze hormonal regulation of color development in strawberry but that the cell wall remodeling process associated with fruit softening might be masked by the high presence of extensin in callus cultures
Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction
[EN] Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria x anahassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutaturn spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.Authors are grateful to Dr. JM Lopez-Aranda (IFAPA-Centro de Churriana) for providing micropropagated strawberry plants and to Nicolas Garcia-Caparros for technical assistance. Authors also want to thank Kevin M. Folta for his insightful comments on the paper. This work was supported by Junta de Andalucia, Spain [Proyectos de Excelencia P07-AGR-02482/P12-AGR-2174, and grants to Grupo-BIO278].Amil-Ruiz, F.; Garrido-Gala, J.; Gadea Vacas, J.; Blanco-Portales, R.; Munoz-Merida, A.; Trelles, O.; De Los Santos, B.... (2016). Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction. Frontiers in Plant Science. 7(1036). https://doi.org/10.3389/fpls.2016.01036S71036Acosta, I. F., & Farmer, E. E. (2010). Jasmonates. The Arabidopsis Book, 8, e0129. doi:10.1199/tab.0129Al-Shahrour, F., Diaz-Uriarte, R., & Dopazo, J. (2004). FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics, 20(4), 578-580. doi:10.1093/bioinformatics/btg455Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. doi:10.1016/s0022-2836(05)80360-2Amil-Ruiz, F., Blanco-Portales, R., Muñoz-Blanco, J., & Caballero, J. L. (2011). The Strawberry Plant Defense Mechanism: A Molecular Review. Plant and Cell Physiology, 52(11), 1873-1903. doi:10.1093/pcp/pcr136Amil-Ruiz, F., Garrido-Gala, J., Blanco-Portales, R., Folta, K. M., Muñoz-Blanco, J., & Caballero, J. L. (2013). Identification and Validation of Reference Genes for Transcript Normalization in Strawberry (Fragaria × ananassa) Defense Responses. PLoS ONE, 8(8), e70603. doi:10.1371/journal.pone.0070603Arroyo, F. T., Moreno, J., GarcÃa-Herdugo, G., Santos, B. D. los, Barrau, C., Porras, M., … Romero, F. (2005). Ultrastructure of the early stages of Colletotrichum acutatum infection of strawberry tissues. Canadian Journal of Botany, 83(5), 491-500. doi:10.1139/b05-022Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556Aviv, D. H., Rustérucci, C., Iii, B. F. H., Dietrich, R. A., Parker, J. E., & Dangl, J. L. (2002). Runaway cell death, but not basal disease resistance, inlsd1is SA- andNIM1/NPR1-dependent. The Plant Journal, 29(3), 381-391. doi:10.1046/j.0960-7412.2001.01225.xBak, S., Beisson, F., Bishop, G., Hamberger, B., Höfer, R., Paquette, S., & Werck-Reichhart, D. (2011). Cytochromes P450. The Arabidopsis Book, 9, e0144. doi:10.1199/tab.0144Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., Ganguli, A., Kotak, S., … von Koskull-DÖring, P. (2004). Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences, 29(4), 471-487. doi:10.1007/bf02712120Bhattacharjee, S. (2012). The Language of Reactive Oxygen Species Signaling in Plants. Journal of Botany, 2012, 1-22. doi:10.1155/2012/985298Birkenbihl, R. P., Diezel, C., & Somssich, I. E. (2012). Arabidopsis WRKY33 Is a Key Transcriptional Regulator of Hormonal and Metabolic Responses toward Botrytis cinerea Infection. Plant Physiology, 159(1), 266-285. doi:10.1104/pp.111.192641Caarls, L., Pieterse, C. M. J., & Van Wees, S. C. M. (2015). How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00170Casado-DÃaz, A., Encinas-Villarejo, S., Santos, B. de los, Schilirò, E., Yubero-Serrano, E.-M., Amil-RuÃz, F., … Caballero, J.-L. (2006). Analysis of strawberry genes differentially expressed in response to Colletotrichum infection. Physiologia Plantarum, 128(4), 633-650. doi:10.1111/j.1399-3054.2006.00798.xCharng, Y., Liu, H., Liu, N., Chi, W., Wang, C., Chang, S., & Wang, T. (2006). A Heat-Inducible Transcription Factor, HsfA2, Is Required for Extension of Acquired Thermotolerance in Arabidopsis. Plant Physiology, 143(1), 251-262. doi:10.1104/pp.106.091322Chung, S. H., Rosa, C., Scully, E. D., Peiffer, M., Tooker, J. F., Hoover, K., … Felton, G. W. (2013). Herbivore exploits orally secreted bacteria to suppress plant defenses. Proceedings of the National Academy of Sciences, 110(39), 15728-15733. doi:10.1073/pnas.1308867110Curry, K. J., Abril, M., Avant, J. B., & Smith, B. J. (2002). Strawberry Anthracnose: Histopathology of Colletotrichum acutatum and C. fragariae. Phytopathology®, 92(10), 1055-1063. doi:10.1094/phyto.2002.92.10.1055Debode, J., Van Hemelrijck, W., Baeyen, S., Creemers, P., Heungens, K., & Maes, M. (2009). Quantitative detection and monitoring ofColletotrichum acutatumin strawberry leaves using real-time PCR. Plant Pathology, 58(3), 504-514. doi:10.1111/j.1365-3059.2008.01987.xDempsey, D. A., & Klessig, D. F. (2012). SOS – too many signals for systemic acquired resistance? Trends in Plant Science, 17(9), 538-545. doi:10.1016/j.tplants.2012.05.011Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539-548. doi:10.1038/nrg2812Doehlemann, G., Wahl, R., Horst, R. J., Voll, L. M., Usadel, B., Poree, F., … Kämper, J. (2008). Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. The Plant Journal, 56(2), 181-195. doi:10.1111/j.1365-313x.2008.03590.xDong, X. (2004). NPR1, all things considered. Current Opinion in Plant Biology, 7(5), 547-552. doi:10.1016/j.pbi.2004.07.005Durgbanshi, A., Arbona, V., Pozo, O., Miersch, O., Sancho, J. V., & Gómez-Cadenas, A. (2005). Simultaneous Determination of Multiple Phytohormones in Plant Extracts by Liquid Chromatography−Electrospray Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 53(22), 8437-8442. doi:10.1021/jf050884bEl Oirdi, M., El Rahman, T. A., Rigano, L., El Hadrami, A., Rodriguez, M. C., Daayf, F., … Bouarab, K. (2011). Botrytis cinerea Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato. The Plant Cell, 23(6), 2405-2421. doi:10.1105/tpc.111.083394Encinas-Villarejo, S., Maldonado, A. M., Amil-Ruiz, F., de los Santos, B., Romero, F., Pliego-Alfaro, F., … Caballero, J. L. (2009). Evidence for a positive regulatory role of strawberry (Fragaria×ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance. Journal of Experimental Botany, 60(11), 3043-3065. doi:10.1093/jxb/erp152Freeman, S., Horowitz, S., & Sharon, A. (2001). Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum from Strawberry and Other Plants. Phytopathology®, 91(10), 986-992. doi:10.1094/phyto.2001.91.10.986Freeman, S., Katan, T., & Shabi, E. (1998). Characterization of Colletotrichum Species Responsible for Anthracnose Diseases of Various Fruits. Plant Disease, 82(6), 596-605. doi:10.1094/pdis.1998.82.6.596Gfeller, A., Dubugnon, L., Liechti, R., & Farmer, E. E. (2010). Jasmonate Biochemical Pathway. Science Signaling, 3(109), cm3-cm3. doi:10.1126/scisignal.3109cm3Grellet-Bournonville, C. F., Martinez-Zamora, M. G., Castagnaro, A. P., & DÃaz-Ricci, J. C. (2012). Temporal accumulation of salicylic acid activates the defense response against Colletotrichum in strawberry. Plant Physiology and Biochemistry, 54, 10-16. doi:10.1016/j.plaphy.2012.01.019Guidarelli, M., Carbone, F., Mourgues, F., Perrotta, G., Rosati, C., Bertolini, P., & Baraldi, E. (2011). Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant Pathology, 60(4), 685-697. doi:10.1111/j.1365-3059.2010.02423.xHeidrich, K., Wirthmueller, L., Tasset, C., Pouzet, C., Deslandes, L., & Parker, J. E. (2011). Arabidopsis EDS1 Connects Pathogen Effector Recognition to Cell Compartment-Specific Immune Responses. Science, 334(6061), 1401-1404. doi:10.1126/science.1211641Horowitz, S., Freeman, S., & Sharon, A. (2002). Use of Green Fluorescent Protein-Transgenic Strains to Study Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum. Phytopathology®, 92(7), 743-749. doi:10.1094/phyto.2002.92.7.743Ikeda, M., Mitsuda, N., & Ohme-Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b Act as Repressors of the Expression of Heat-Inducible Hsfs But Positively Regulate the Acquired Thermotolerance. Plant Physiology, 157(3), 1243-1254. doi:10.1104/pp.111.179036Ikeda, M., & Ohme-Takagi, M. (2009). A Novel Group of Transcriptional Repressors in Arabidopsis. Plant and Cell Physiology, 50(5), 970-975. doi:10.1093/pcp/pcp048Khan, A. A., & Shih, D. S. (2004). Molecular cloning, characterization, and expression analysis of two class II chitinase genes from the strawberry plant. Plant Science, 166(3), 753-762. doi:10.1016/j.plantsci.2003.11.015Krinke, O., Ruelland, E., Valentová, O., Vergnolle, C., Renou, J.-P., Taconnat, L., … Zachowski, A. (2007). Phosphatidylinositol 4-Kinase Activation Is an Early Response to Salicylic Acid in Arabidopsis Suspension Cells. Plant Physiology, 144(3), 1347-1359. doi:10.1104/pp.107.100842Kubigsteltig, I., Laudert, D., & Weiler, E. W. (1999). Structure and regulation of the Arabidopsis thaliana allene oxide synthase gene. Planta, 208(4), 463-471. doi:10.1007/s004250050583Leandro, L. F. S., Gleason, M. L., Nutter, F. W., Wegulo, S. N., & Dixon, P. M. (2001). Germination and Sporulation of Colletotrichum acutatum on Symptomless Strawberry Leaves. Phytopathology®, 91(7), 659-664. doi:10.1094/phyto.2001.91.7.659Leon-Reyes, A., Van der Does, D., De Lange, E. S., Delker, C., Wasternack, C., Van Wees, S. C. M., … Pieterse, C. M. J. (2010). Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta, 232(6), 1423-1432. doi:10.1007/s00425-010-1265-zLi, J., Brader, G., Kariola, T., & Tapio Palva, E. (2006). WRKY70 modulates the selection of signaling pathways in plant defense. The Plant Journal, 46(3), 477-491. doi:10.1111/j.1365-313x.2006.02712.xLi, J., Brader, G., & Palva, E. T. (2004). The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. The Plant Cell, 16(2), 319-331. doi:10.1105/tpc.016980Liu, P.-P., von Dahl, C. C., Park, S.-W., & Klessig, D. F. (2011). Interconnection between Methyl Salicylate and Lipid-Based Long-Distance Signaling during the Development of Systemic Acquired Resistance in Arabidopsis and Tobacco. Plant Physiology, 155(4), 1762-1768. doi:10.1104/pp.110.171694Lodha, T. D., & Basak, J. (2011). Plant–Pathogen Interactions: What Microarray Tells About It? Molecular Biotechnology, 50(1), 87-97. doi:10.1007/s12033-011-9418-2López-Ráez, J. A., Verhage, A., Fernández, I., GarcÃa, J. M., Azcón-Aguilar, C., Flors, V., & Pozo, M. J. (2010). Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany, 61(10), 2589-2601. doi:10.1093/jxb/erq089Maas, J. L. (Ed.). (1998). Compendium of Strawberry Diseases, Second Edition. doi:10.1094/9780890546178Makowski, R. M. D., & Mortensen, K. (1998). Latent infections and penetration of the bioherbicide agent Colletotrichum gloeosporioides f. sp. malvae in non-target field crops under controlled environmental conditions. Mycological Research, 102(12), 1545-1552. doi:10.1017/s0953756298006960Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., … Dietrich, R. A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26(4), 403-410. doi:10.1038/82521Marcel, S., Sawers, R., Oakeley, E., Angliker, H., & Paszkowski, U. (2010). Tissue-Adapted Invasion Strategies of the Rice Blast Fungus Magnaporthe oryzae. The Plant Cell, 22(9), 3177-3187. doi:10.1105/tpc.110.078048Ndamukong, I., Abdallat, A. A., Thurow, C., Fode, B., Zander, M., Weigel, R., & Gatz, C. (2007). SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. The Plant Journal, 50(1), 128-139. doi:10.1111/j.1365-313x.2007.03039.xPajerowska-Mukhtar, K. M., Wang, W., Tada, Y., Oka, N., Tucker, C. L., Fonseca, J. P., & Dong, X. (2012). The HSF-like Transcription Factor TBF1 Is a Major Molecular Switch for Plant Growth-to-Defense Transition. Current Biology, 22(2), 103-112. doi:10.1016/j.cub.2011.12.015Pe�a-Cort�s, H., Barrios, P., Dorta, F., Polanco, V., S�nchez, C., S�nchez, E., & Ram�rez, I. (2004). Involvement of Jasmonic Acid and Derivatives in Plant Response to Pathogen and Insects and in Fruit Ripening. Journal of Plant Growth Regulation, 23(3), 246-260. doi:10.1007/s00344-004-0035-1Pernas, M., Ryan, E., & Dolan, L. (2010). SCHIZORIZA Controls Tissue System Complexity in Plants. Current Biology, 20(9), 818-823. doi:10.1016/j.cub.2010.02.062Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5(5), 308-316. doi:10.1038/nchembio.164Rahman, T. A. E., Oirdi, M. E., Gonzalez-Lamothe, R., & Bouarab, K. (2012). Necrotrophic Pathogens Use the Salicylic Acid Signaling Pathway to Promote Disease Development in Tomato. Molecular Plant-Microbe Interactions®, 25(12), 1584-1593. doi:10.1094/mpmi-07-12-0187-rRen, C.-M., Zhu, Q., Gao, B.-D., Ke, S.-Y., Yu, W.-C., Xie, D.-X., & Peng, W. (2008). Transcription Factor WRKY70 Displays Important but No Indispensable Roles in Jasmonate and Salicylic Acid Signaling. Journal of Integrative Plant Biology, 50(5), 630-637. doi:10.1111/j.1744-7909.2008.00653.xRietz, S., Stamm, A., Malonek, S., Wagner, S., Becker, D., Medina-Escobar, N., … Parker, J. E. (2011). Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytologist, 191(1), 107-119. doi:10.1111/j.1469-8137.2011.03675.xRobert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology, 49(1), 317-343. doi:10.1146/annurev-phyto-073009-114447Cristina, M., Petersen, M., & Mundy, J. (2010). Mitogen-Activated Protein Kinase Signaling in Plants. Annual Review of Plant Biology, 61(1), 621-649. doi:10.1146/annurev-arplant-042809-112252Rouhier, N. (2006). Genome-wide analysis of plant glutaredoxin systems. Journal of Experimental Botany, 57(8), 1685-1696. doi:10.1093/jxb/erl001Ruepp, A. (2004). The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research, 32(18), 5539-5545. doi:10.1093/nar/gkh894Rusterucci, C. (2001). The Disease Resistance Signaling Components EDS1 and PAD4 Are Essential Regulators of the Cell Death Pathway Controlled by LSD1 in Arabidopsis. THE PLANT CELL ONLINE, 13(10), 2211-2224. doi:10.1105/tpc.13.10.2211Sarowar, S., Zhao, Y., Soria-Guerra, R. E., Ali, S., Zheng, D., Wang, D., & Korban, S. S. (2011). Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. Journal of Experimental Botany, 62(14), 4851-4861. doi:10.1093/jxb/err147Sasaki, Y. (2001). Monitoring of Methyl Jasmonate-responsive Genes in Arabidopsis by cDNA Macroarray: Self-activation of Jasmonic Acid Biosynthesis and Crosstalk with Other Phytohormone Signaling Pathways. DNA Research, 8(4), 153-161. doi:10.1093/dnares/8.4.153Schenk, P. M., Kazan, K., Manners, J. M., Anderson, J. P., Simpson, R. S., Wilson, I. W., … Maclean, D. J. (2003). Systemic Gene Expression in Arabidopsis during an Incompatible Interaction with Alternaria brassicicola. Plant Physiology, 132(2), 999-1010. doi:10.1104/pp.103.021683Simpson, D. W. (1991). Resistance toBotrytis cinereain pistillate genotypes of the cultivated strawberryFragaria ananassa. Journal of Horticultural Science, 66(6), 719-723. doi:10.1080/00221589.1991.11516203Shulaev, V., Sargent, D. J., Crowhurst, R. N., Mockler, T. C., Folkerts, O., Delcher, A. L., … Mane, S. P. (2010). The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 43(2), 109-116. doi:10.1038/ng.740Song, W. C., Funk, C. D., & Brash, A. R. (1993). Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proceedings of the National Academy of Sciences, 90(18), 8519-8523. doi:10.1073/pnas.90.18.8519Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89-100. doi:10.1038/nri3141Spoel, S. H., Johnson, J. S., & Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences, 104(47), 18842-18847. doi:10.1073/pnas.0708139104Staswick, P. E., & Tiryaki, I. (2004). The Oxylipin Signal Jasmonic Acid Is Activated by an Enzyme That Conjugates It to Isoleucine in Arabidopsis. The Plant Cell, 16(8), 2117-2127. doi:10.1105/tpc.104.023549Ten Hove, C. A., Willemsen, V., de Vries, W. J., van Dijken, A., Scheres, B., & Heidstra, R. (2010). SCHIZORIZA Encodes a Nuclear Factor Regulating Asymmetry of Stem Cell Divisions in the Arabidopsis Root. Current Biology, 20(5), 452-457. doi:10.1016/j.cub.2010.01.018Turner, J. G., Ellis, C., & Devoto, A. (2002). The Jasmonate Signal Pathway. The Plant Cell, 14(suppl 1), S153-S164. doi:10.1105/tpc.000679Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., … Ryals, J. (1992). Acquired resistance in Arabidopsis. The Plant Cell, 4(6), 645-656. doi:10.1105/tpc.4.6.645Vargas, W. A., MartÃn, J. M. S., Rech, G. E., Rivera, L. P., Benito, E. P., DÃaz-MÃnguez, J. M., … Sukno, S. A. (2012). Plant Defense Mechanisms Are Activated during Biotrophic and Necrotrophic Development of Colletotricum graminicola in Maize. Plant Physiology, 158(3), 1342-1358. doi:10.1104/pp.111.190397Venugopal, S. C., Jeong, R.-D., Mandal, M. K., Zhu, S., Chandra-Shekara, A. C., Xia, Y., … Kachroo, P. (2009). Enhanced Disease Susceptibility 1 and Salicylic Acid Act Redundantly to Regulate Resistance Gene-Mediated Signaling. PLoS Genetics, 5(7), e1000545. doi:10.1371/journal.pgen.1000545Vlot, A. C., Liu, P.-P., Cameron, R. K., Park, S.-W., Yang, Y., Kumar, D., … Klessig, D. F. (2008). Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance inArabidopsis thaliana. The Plant Journal, 56(3), 445-456. doi:10.1111/j.1365-313x.2008.03618.xWang, D., Amornsiripanitch, N., & Dong, X. (2006). A Genomic Approach to Identify Regulatory Nodes in the Transcriptional Network of Systemic Acquired Resistance in Plants. PLoS Pathogens, 2(11), e123. doi:10.1371/journal.ppat.0020123Wang, D. (2005). Induction of Protein Secretory Pathway Is Required for Systemic Acquired Resistance. Science, 308(5724), 1036-1040. doi:10.1126/science.1108791Wang, G.-F., Seabolt, S., Hamdoun, S., Ng, G., Park, J., & Lu, H. (2011). Multiple Roles of WIN3 in Regulating Disease Resistance, Cell Death, and Flowering Time in Arabidopsis. Plant Physiology, 156(3), 1508-1519. doi:10.1104/pp.111.176776Wiermer, M., Feys, B. J., & Parker, J. E. (2005). Plant immunity: the EDS1 regulatory node. Current Opinion in Plant Biology, 8(4), 383-389. doi:10.1016/j.pbi.2005.05.010Windram, O., Madhou, P., McHattie, S., Hill, C., Hickman, R., Cooke, E., … Denby, K. J. (2012). Arabidopsis Defense against Botrytis cinerea: Chronology and Regulation Deciphered by High-Resolution Temporal Transcriptomic Analysis. Th
Evaluation of the role of the endo-beta-(1,4)-glucanase gene FaEG3 in strawberry fruit softening
In strawberry, Fragaria x ananassa Duch., fruit, two different endo-beta-1,4-glucanase genes, FaEG1 and FaEG3, also named Cel1 and Cel2, are expressed during the softening process that occurs during fruit ripening. It has also been suggested that FaEG3, which contains a putative cellulose-binding domain, could play a key role in fruit development, since previous attempts to down-regulate this gene through transgenesis have been unsuccessful. In this investigation, we obtained transgenic strawberry plants containing an antisense sequence of the FaEG3 gene under the control of the 35S promoter. Ripened fruit from transgenic lines (Acel lines) showed large variation in FaEG3 silencing, but fruit firmness was similar to control fruit in all the lines. Two Acel lines showing almost 95% reductions in FaEG3 mRNA levels were selected for further study. In these lines, FaEG3 down-regulation was high, from 78 to 95%, at all fruit developmental stages, whereas FaEG1 was only slightly suppressed. In spite of the high FaEG3 silencing achieved, EGase activity was not modified in ripe fruit. At the cell wall level, walls from transgenic ripe fruit contained a significantly higher amount of the 4 M KOH fraction, which is enriched in hemicellulosic polymers. The analysis of this fraction by size exclusion chromatography showed that transgenic cell walls contained a smaller amount of higher molecular mass polymers than controls. Altogether, these results indicate that FaEG3 does not play a key role either in fruit development or fruit softening. However, its silencing affects the amount and, in a minor way, the size of hemicellulosic polymers. (C) 2009 Elsevier B.V. All rights reserved
Transient silencing of the FaWRKY1 strawberry gene (Fragaria x ananassa) in fruit induces resistance to Colletotrichum acutatum infection
Trabajo presentado en el 15th Congress of the Mediterranean Phytopathological Union (Plant health sistaining Mediterranean ecosystems), celebrado en Córdoba (España) del 20 al 23 de junio de 2017.Anthracnose, caused by Colletotrichum acutatum, is
responsible for significant yield losses in commercial
strawberry production worldwide. For this reason,
it is of interest to uncover the molecular basis underlying
this strawberry/pathogen interaction. Previously,
FaWRKY1 was identified as an important
element mediating defence responses.This research was supported by the Project P12-AGR-2174 (Junta de AndalucÃa, Spain).Peer reviewe