36 research outputs found

    Follow-Up Imaging of Inflammatory Myofibroblastic Tumor of the Uterus and Its Spontaneous Regression

    Get PDF
    Inflammatory myofibroblastic tumor (IMT) is an aggressive benign mass that may arise from various tissues and organs with a great variability of histological and clinical appearances. Due to variable and nonspecific imaging findings, diagnosis of IMT is not obtained before surgery. The aim of this paper is to present CT and MRI findings during four-year follow-up of complete, spontaneous regression of IMT of the uterus. The diagnosis was made by histology and immunohistochemistry analysis of the open excisional biopsy specimen. At that time, the organ of origin was not specified. After analysis of the follow-up imaging findings and the mode of tumor regression, the uterus was proclaimed as the probable site of origin. IMT of the uterus is extremely rare and has been reported in ten cases up to now. The gradual, complete regression of uterine IMT documented by CT and MRI may contribute to understanding of its nature

    Molecular signature of response to preoperative radiotherapy in locally advanced breast cancer

    Get PDF
    Background: Radiation therapy is an indispensable part of various treatment modalities for breast cancer. Specifically, for non-inflammatory locally advanced breast cancer (LABC) patients, preoperative radiotherapy (pRT) is currently indicated as a second line therapy in the event of lack of response to neoadjuvant chemotherapy. Still approximately one third of patients fails to respond favourably to pRT. The aim of this study was to explore molecular mechanisms underlying differential response to radiotherapy (RT) to identify predictive biomarkers and potential targets for increasing radiosensitivity.Methods: The study was based on a cohort of 134 LABC patients, treated at the Institute of Oncology and Radiology of Serbia (IORS) with pRT, without previous or concomitant systemic therapy. Baseline transcriptional profiles were established using Agilent 60 K microarray platform in a subset of 23 formalin-fixed paraffin-embedded (FFPE) LABC tumour samples of which 11 radiotherapy naïve and 3 post-radiotherapy samples passed quality control and were used for downstream analysis. Biological networks and signalling pathways underlying differential response to RT were identified using Ingenuity Pathways Analysis software. Predictive value of candidate genes in the preoperative setting was further validated by qRT-PCR in an independent subset of 60 LABC samples of which 42 had sufficient quality for data analysis, and in postoperative setting using microarray data from 344 node-negative breast cancer patients (Erasmus cohort, GSE2034 and GSE5327) treated either with surgery only (20%) or surgery with RT (80%).Results: We identified 192 significantly differentially expressed genes (FDR < 0.10) between pRT-responsive and non-responsive tumours, related to regulation of cellular development, growth and proliferation, cell cycle control of chromosomal replication, glucose metabolism and NAD biosynthesis II route. APOA1, MAP3K4, and MMP14 genes were differentially expressed (FDR < 0.20) between pRT responders and non-responders in preoperative setting, while MAP3K4 was further validated as RT-specific predictive biomarker of distant metastasis free survival (HR = 2.54, [95%CI:1.42–4.55], p = 0.002) in the postoperative setting.Conclusions: This study pinpoints MAP3K4 as a putative biomarker of response to RT in both preoperative and postoperative settings and a potential target for radiosensitising combination therapy, warranting further pre-clinical studies and prospective clinical validation

    Tumor response and patient outcome after preoperative radiotherapy in locally advanced non-inflammatory breast cancer patients

    Get PDF
    Purpose: The purpose of this analysis was to assess the tumor response and long-term outcome in patients treated with preoperative radiotherapy (PRT) without systemic therapy. Methods: Between 1997 and 2000, 134 patients with non-inflammatory locally advanced breast cancer (LABC) were treated with PRT. The tumor dose was 45 Gy in 15 fractions to the breast and to regional lymph nodes over 6 weeks. Radical mastectomy was performed 6 weeks after PRT to all patients and adjuvant systemic therapy was administered as per protocol. The measures of disease outcome were overall survival (OS) and disease-free survival (DFS) which estimated using the Kaplan-Meier method. Results: Median follow-up was 74 months (range 4-216). Objective clinical tumor response after PRT was observed in 77.6% of the patients. Clinical complete tumor response (cCR) was achieved in 21.6% of the patients. Pathological CR in the breast was achieved in 15% of the patients. The 5- and 10-year OS were 55.1 and 37.8%, respectively. The 5- and 10-year DFS were 39.2 and 27%, respectively. Patients who achieved cCR had significantly longer OS in comparison with patients achieving clinical partial response (cPR) and clinical stable disease (cSD). Similarly, DFS of patients in the cCR group was longer compared with patients with cPR and cSD, yet without statistical significance. Conclusions: Our results showed that local control in LABC patients achieved by primary PRT, followed by radical mastectomy was comparable with the results reported in the literature. Complete pathologic response to PRT identified a subgroup of patients with a trend toward better DFS and OS

    Molecular signature of response to preoperative radiotherapy in locally advanced breast cancer

    Get PDF
    BACKGROUND: Radiation therapy is an indispensable part of various treatment modalities for breast cancer. Specifically, for non-inflammatory locally advanced breast cancer (LABC) patients, preoperative radiotherapy (pRT) is currently indicated as a second line therapy in the event of lack of response to neoadjuvant chemotherapy. Still approximately one third of patients fails to respond favourably to pRT. The aim of this study was to explore molecular mechanisms underlying differential response to radiotherapy (RT) to identify predictive biomarkers and potential targets for increasing radiosensitivity. METHODS: The study was based on a cohort of 134 LABC patients, treated at the Institute of Oncology and Radiology of Serbia (IORS) with pRT, without previous or concomitant systemic therapy. Baseline transcriptional profiles were established using Agilent 60 K microarray platform in a subset of 23 formalin-fixed paraffin-embedded (FFPE) LABC tumour samples of which 11 radiotherapy naïve and 3 post-radiotherapy samples passed quality control and were used for downstream analysis. Biological networks and signalling pathways underlying differential response to RT were identified using Ingenuity Pathways Analysis software. Predictive value of candidate genes in the preoperative setting was further validated by qRT-PCR in an independent subset of 60 LABC samples of which 42 had sufficient quality for data analysis, and in postoperative setting using microarray data from 344 node-negative breast cancer patients (Erasmus cohort, GSE2034 and GSE5327) treated either with surgery only (20%) or surgery with RT (80%). RESULTS: We identified 192 significantly differentially expressed genes (FDR < 0.10) between pRT-responsive and non-responsive tumours, related to regulation of cellular development, growth and proliferation, cell cycle control of chromosomal replication, glucose metabolism and NAD biosynthesis II route. APOA1, MAP3K4, and MMP14 genes were differentially expressed (FDR < 0.20) between pRT responders and non-responders in preoperative setting, while MAP3K4 was further validated as RT-specific predictive biomarker of distant metastasis free survival (HR = 2.54, [95%CI:1.42-4.55], p = 0.002) in the postoperative setting. CONCLUSIONS: This study pinpoints MAP3K4 as a putative biomarker of response to RT in both preoperative and postoperative settings and a potential target for radiosensitising combination therapy, warranting further pre-clinical studies and prospective clinical validation

    The impact of PTEN tumor suppressor gene on acquiring resistance to tamoxifen treatment in breast cancer patients

    Get PDF
    Tamoxifen is a standard therapeutical treatment in patients with estrogen receptor positive breast carcinoma. However, less than 50% of estrogen receptor positive breast cancers do not respond to tamoxifen treatment whereas 40% of tumors that initially respond to treatment develop resistance over time. The underlying mechanisms for tamoxifen resistance are probably multifactorial but remain largely unknown. The primary aim of this study was to investigate the impact of PTEN tumor suppressor gene on acquiring resistance to tamoxifen by analyzing loss of heterozygosity (LOH) and immunohystochemical expression of PTEN in 49 primary breast carcinomas of patients treated with tamoxifen as the only adjuvant therapy. The effect of PTEN inactivation on breast cancer progression and disease outcome was also analyzed. Reduced or completely lost PTEN expression was observed in 55.1% of samples, while 63.3% of samples displayed LOH of PTEN gene. Inactivation of PTEN immunoexpression significantly correlated with the PTEN loss of heterozygosity, suggesting LOH as the most important genetic mechanism for the reduction or complete loss of PTEN expression in primary breast carcinoma. Most importantly, LOH of PTEN and consequential reduction of its immunoexpression showed significant correlation with the recurrence of the disease. Besides, our study revealed that LOH of PTEN tumor suppressor was significantly associated with shorter disease free survival, breast cancer specific survival and overall survival. In summary, our results imply that LOH of PTEN could be used as a good prognostic characteristic for the outcome of breast cancer patients treated with tamoxifen

    Follow-Up Imaging of Inflammatory Myofibroblastic Tumor of the Uterus and Its Spontaneous Regression

    No full text
    Inflammatory myofibroblastic tumor (IMT) is an aggressive benign mass that may arise from various tissues and organs with a great variability of histological and clinical appearances. Due to variable and nonspecific imaging findings, diagnosis of IMT is not obtained before surgery. The aim of this paper is to present CT and MRI findings during four-year follow-up of complete, spontaneous regression of IMT of the uterus. The diagnosis was made by histology and immunohistochemistry analysis of the open excisional biopsy specimen. At that time, the organ of origin was not specified. After analysis of the follow-up imaging findings and the mode of tumor regression, the uterus was proclaimed as the probable site of origin. IMT of the uterus is extremely rare and has been reported in ten cases up to now. The gradual, complete regression of uterine IMT documented by CT and MRI may contribute to understanding of its nature
    corecore