7 research outputs found

    Repetitive Delone Sets and Quasicrystals

    Full text link
    This paper considers the problem of characterizing the simplest discrete point sets that are aperiodic, using invariants based on topological dynamics. A Delone set whose patch-counting function N(T), for radius T, is finite for all T is called repetitive if there is a function M(T) such that every ball of radius M(T)+T contains a copy of each kind of patch of radius T that occurs in the set. This is equivalent to the minimality of an associated topological dynamical system with R^n-action. There is a lower bound for M(T) in terms of N(T), namely N(T) = O(M(T)^n), but no general upper bound. The complexity of a repetitive Delone set can be measured by the growth rate of its repetitivity function M(T). For example, M(T) is bounded if and only if the set is a crystal. A set is called is linearly repetitive if M(T) = O(T) and densely repetitive if M(T) = O(N(T))^{1/n}). We show that linearly repetitive sets and densely repetitive sets have strict uniform patch frequencies, i.e. the associated topological dynamical system is strictly ergodic. It follows that such sets are diffractive. In the reverse direction, we construct a repetitive Delone set in R^n which has M(T) = O(T(log T)^{2/n}(log log log T)^{4/n}), but does not have uniform patch frequencies. Aperiodic linearly repetitive sets have many claims to be the simplest class of aperiodic sets, and we propose considering them as a notion of "perfectly ordered quasicrystal".Comment: To appear in "Ergodic Theory and Dynamical Systems" vol.23 (2003). 37 pages. Uses packages latexsym, ifthen, cite and files amssym.def, amssym.te

    Diffraction from visible lattice points and k-th power free integers

    Get PDF
    We prove that the set of visible points of any lattice of dimension at least 2 has pure point diffraction spectrum, and we determine the diffraction spectrum explicitly. This settles previous speculation on the exact nature of the diffraction in this situation, see math-ph/9903046 and references therein. Using similar methods we show the same result for the 1-dimensional set of k-th power free integers with k at least 2. Of special interest is the fact that neither of these sets is a Delone set --- each has holes of unbounded inradius. We provide a careful formulation of the mathematical ideas underlying the study of diffraction from infinite point sets.Comment: 45 pages, with minor corrections and improvements; dedicated to Ludwig Danzer on the occasion of his 70th birthda

    Entropy and diffraction of the kk-free points in nn-dimensional lattices

    Full text link
    We consider the kkth-power-free points in nn-dimensional lattices and explicitly calculate their entropies and diffraction spectra. This is of particular interest since these sets have holes of unbounded inradius.Comment: 27 pages, 2 figures; revised version with new references [7,8,23]; latest version with new Theorem 6 and updated reference [7

    Local Complexity of Delone Sets and Crystallinity

    Full text link
    This paper characterizes when a Delone set X is an ideal crystal in terms of restrictions on the number of its local patches of a given size or on the hetereogeneity of their distribution. Let N(T) count the number of translation-inequivalent patches of radius T in X and let M(T) be the minimum radius such that every closed ball of radius M(T) contains the center of a patch of every one of these kinds. We show that for each of these functions there is a `gap in the spectrum' of possible growth rates between being bounded and having linear growth, and that having linear growth is equivalent to X being an ideal crystal. Explicitly, for N(T), if R is the covering radius of X then either N(T) is bounded or N(T) >= T/2R for all T>0. The constant 1/2R in this bound is best possible in all dimensions. For M(T), either M(T) is bounded or M(T) >= T/3 for all T>0. Examples show that the constant 1/3 in this bound cannot be replaced by any number exceeding 1/2. We also show that every aperiodic Delone set X has M(T) >= c(n)T for all T>0, for a certain constant c(n) which depends on the dimension n of X and is greater than 1/3 when n > 1.Comment: 26 pages. Uses latexsym and amsfonts package

    The torus parametrization of quasiperiodic LI-classes

    No full text
    The torus parametrization of quasiperiodic local isomorphism classes is introduced and used to determine the number of elements in such a class with special symmetries or ination properties. The method is explained in an illustrative fashion for some widely used tiling classes with golden mean rescaling, namely for the Fibonacci chain (1D), the triangle and Penrose patterns (2D) and for Kramer's and Danzer's icosahedral tilings (3D). We obtain a rather complete picture of the orbit structure within these classes, but discuss also various general results
    corecore