30 research outputs found

    High-intensity high-volume swimming induces more robust signaling through PGC-1α and AMPK activation than sprint interval swimming in <i>m. triceps brachii</i>

    Get PDF
    We aimed to test whether high-intensity high-volume training (HIHVT) swimming would induce more robust signaling than sprint interval training (SIT) swimming within the m. triceps brachii due to lower metabolic and oxidation. Nine well-trained swimmers performed the two training procedures on separate randomized days. Muscle biopsies from m. triceps brachii and blood samples were collected at three different time points: a) before the intervention (pre), b) immediately after the swimming procedures (post) and c) after 3 h of rest (3 h). Hydroperoxides, creatine kinase (CK), and lactate dehydrogenase (LDH) were quantified from blood samples, and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and the AMPKpTHR172/AMPK ratio were quantified by Western blot analysis. PGC-1α, sirtuin 3 (SIRT3), superoxide-dismutase 2 (SOD2), and vascular endothelial growth factor (VEGF) mRNA levels were also quantified. SIT induced a higher release of LDH (

    The relative abundance of fecal bacterial species belonging to the Firmicutes and Bacteroidetes phyla is related to plasma levels of bile acids in young adults

    Get PDF
    The online version contains supplementary material available at https://doi.org/10.1007/s11306-023-02016-8.Funding for open access publishing: Universidad de Granada/CBUA. The study was supported by the Spanish Ministry of Economy and Competitiveness via Fondo de Investigacion Sanitaria del Instituto de Salud Carlos III (PI13/01393) and PTA 12264-I, Retos de la Sociedad (DEP2016-79512-R), and European Regional Development Funds (ERDF), by the Spanish Ministry of Education (FPU16/05159, FPU16/02828, FPU17/01523 and FPU19/01609), the Fundacion Iberoamericana de Nutricion (FINUT), the University of Granada Plan Propio de Investigacion 2016-Excellence actions: Unit of Excellence on Exercise and Health (UCEES), AstraZeneca HealthCare Foundation, and by the Junta de Andalucia, Consejeria de Economia, Conocimiento, Empresas y Universidad (ref. P18-RT-4455), the Chinese Scholarship Council (CSC, No. 201707060012 to XD), Fundacion Alfonso Martin Escudero and Maria Zambrano fellowship by the Ministerio de Universidades y la Union Europea -NextGenerationEU (RR_C_2021_04). We would like to thank the team of Data Integration Center of University Medicine Magdeburg for local data-analysis solutions; they are supported by MIRACUM and funded by the German Federal Ministry of Education and Research (BMBF) within the "Medical Informatics Funding Scheme" (FKZ 01ZZ1801H). This study is part of a Ph.D. thesis conducted within the Biomedicine Doctoral Studies Program of the University of Granada, Spain. AL was supported by the funds from European Commission through the "European funds for regional development" (EFRE) Project ID: ZS/2018/11/95324.Background Gut bacteria play a crucial role in the metabolism of bile acids (BA). Whether an association exists between the fecal microbiota composition and circulating BA levels in humans is poorly understood. Here, we investigated the relationship between fecal microbiota diversity and composition with plasma levels of BA in young adults. Methods Fecal microbiota diversity/composition was analyzed with 16S rRNA sequencing in 80 young adults (74% women; 21.9 +/- 2.2 years old). Plasma levels of BA were measured using liquid chromatography-tandem mass spectrometry. PERMANOVA and Spearman correlation analyses were used to investigate the association between fecal microbiota parameters and plasma levels of BA. Results Fecal microbiota beta (P = 0.025) and alpha diversity indexes of evenness (rho = 0.237, P = 0.033), Shannon (rho = 0.313, P = 0.004), and inverse Simpson (rho = 0.283, P = 0.010) were positively associated with plasma levels of the secondary BA glycolithocholic acid (GLCA). The relative abundance of genera belonging to the Firmicutes and Bacteroidetes phyla was positively correlated with plasma levels of GLCA (all rho = 0.225, P = 0.049). However, the relative abundance of species from Firmicutes and Bacteroidetes phyla were negatively correlated with plasma levels of primary and secondary BA (all rho = - 0.220, P = 0.045), except for the relative abundance of Bacteroides vulgatus, Alistipes onderdonkii, and Bacteroides xylanisolvens species (Bacteroidetes phylum) that were positively correlated with the plasma levels of GLCA. Conclusions The relative abundance of specific fecal bacteria species is associated with plasma levels of BA in young adults. However, further investigations are required to validate whether the composition of the gut microbiota can regulate the plasma concentrations of BA in humans.Universidad de Granada/CBUASpanish Ministry of Economy and Competitiveness via Fondo de Investigacion Sanitaria del Instituto de Salud Carlos III PI13/01393Retos de la Sociedad DEP2016-79512-REuropean CommissionSpanish Government FPU16/05159, FPU16/02828, FPU17/01523, FPU19/01609Fundacion Iberoamericana de Nutricion (FINUT)University of Granada Plan Propio de Investigacion 2016-Excellence actions: Unit of Excellence on Exercise and Health (UCEES)AstraZenecaJunta de Andalucia P18-RT-4455China Scholarship Council 201707060012Ministerio de Universidades y la Union Europea -Next Generation EU RR_C_2021_04MIRACUMFederal Ministry of Education & Research (BMBF) FKZ 01ZZ1801HUniversity of Granada, SpainEuropean Commission Joint Research Centre ZS/2018/11/9532

    Clustering of Dietary Patterns and Lifestyles among Spanish Children in the EsNuPI Study

    Get PDF
    Dietary patterns (DPs) are known to be tied to lifestyle behaviors. Understanding DPs and their relationships with lifestyle factors can help to prevent children from engaging in unhealthy dietary practices. We aimed to describe DPs in Spanish children aged 1 to <10 years and to examine their associations with sociodemographic and lifestyle variables. The consumption of toddler and young children milk formulas, enriched and fortified milk within the Spanish pediatric population is increasing, and there is a lack of evidence whether the consumption of this type of milk is causing an impact on nutrient intakes and if they are helping to reach the nutrient recommendations. Within the Nutritional Study in the Spanish Pediatric Population (EsNuPI), we considered two study cohorts and three different age groups in three year-intervals in each of them. The study cohort included 740 children in a representative sample of the urban non-vegan Spanish population and 772 children in a convenience cohort of adapted milk consumers (AMS) (including follow-on formula, toddler’s milk, growing up milk, and fortified and enriched milks) who provided information about sociodemographics, lifestyle, and dietary habits; a food frequency questionnaire was used for the latter. Principal component analysis was performed to identify DPs from 18 food groups. Food groups and sociodemographic/lifestyle variables were combined through a hierarchical cluster algorithm. Three DPs predominated in every age group and study sample: a palatable energy-dense food dietary pattern, and two Mediterranean-like DPs. However, children from the AMS showed a predominant dietary pattern markedly related to the Mediterranean diet, with high consumption of cereals, fruits and vegetables, as well as milk and dairy products. The age of children and certain lifestyle factors, namely level of physical activity, parental education, and household income, correlated closely with the dietary clusters. Thus, the findings provide insight into designing lifestyle interventions that could reverse the appearance of unhealthy DPs in the Spanish child population

    Association of breast and gut microbiota dysbiosis and the risk of breast cancer: a case-control clinical study

    Get PDF
    We would like to thank M Luisa Puertas-Martin and Isabel Manzano-Jimenez, nurses at the Unit of Mammary Pathology, General Surgery Service, San Cecilio University Hospital (Granada), without whose enthusiasm the enrolment of participants in Granada would still be stalled. We are indebted to all the women taking part in the study.The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Trial registration ClinicalTrials.gov NCT03885648, 03/25/2019. Retrospectively registered.Background Breast cancer ranks first in women, and is the second cause of death in this gender. In addition to genetics, the environment contributes to the development of the disease, although the factors involved are not well known. Among the latter is the influence of microorganisms and, therefore, attention is recently being paid to the mammary microbiota. We hypothesize that the risk of breast cancer could be associated with the composition and functionality of the mammary/gut microbiota, and that exposure to environmental contaminants (endocrine disruptors, EDCs) might contribute to alter these microbiota. Methods We describe a case-control clinical study that will be performed in women between 25 and 70 years of age. Cases will be women diagnosed and surgically intervened of breast cancer (stages I and II). Women with antecedents of cancer or advanced tumor stage (metastasis), or who have received antibiotic treatment within a period of 3 months prior to recruitment, or any neoadjuvant therapy, will be excluded. Controls will be women surgically intervened of breast augmentation or reduction. Women with oncological, gynecological or endocrine history, and those who have received antibiotic treatment within a period of 3 months prior to recruitment will also be excluded. Blood, urine, breast tissue and stool samples will be collected. Data regarding anthropometric, sociodemographic, reproductive history, tumor features and dietary habits will be gathered. Metabolomic studies will be carried out in stool and breast tissue samples. Metagenomic studies will also be performed in stool and breast tissue samples to ascertain the viral, fungal, bacterial and archaea populations of the microbiota. Quantitation of estrogens, estrogen metabolites and EDCs in samples of serum, urine and breast tissue will also be performed. Discussion: This is the first time that the contribution of bacteria, archaea, viruses and fungi together with their alteration by environmental contaminants to the risk of breast cancer will be evaluated in the same study. Results obtained could contribute to elucidate risk factors, improve the prognosis, as well as to propose novel intervention studies in this disease.This work is funded by grants PI-0538-2017 (Junta de Andalucía, Spain, to LF) and Biomedical Research Networking Center-CIBER de Epidemiología y Salud Pública (CIBERESP) of the Institute of Health Carlos III -supported by European Regional Development Fund/FEDER (FIS-PI16/01812) (to MFF)

    Plasma Levels of Endocannabinoids and Their Analogues Are Related to Specific Fecal Bacterial Genera in Young Adults: Role in Gut Barrier Integrity

    Get PDF
    Objective: To investigate the association of plasma levels of endocannabinoids with fecal microbiota.Methods: Plasma levels of endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), as well as their eleven analogues, and arachidonic acid (AA), were measured using liquid chromatography-tandem mass spectrometry in 92 young adults. DNA extracted from stool samples was analyzed using 16S rRNA gene sequencing. Lipopolysaccharide levels were measured in plasma samples.Results: Plasma levels of endocannabinoids and their analogues were not related to beta or alpha diversity indexes. Plasma levels of AEA and related N-acylethanolamines correlated positively with the relative abundance of Faecalibacterium genus (all rho >= 0.26, p = 0.22, p = 0.24, p = 0.27, p Conclusion: Plasma levels of endocannabinoids and their analogues are correlated to specific fecal bacterial genera involved in maintaining gut barrier integrity in young adults. This suggests that plasma levels of endocannabinoids and their analogues may play a role in the gut barrier integrity in young adults.</p

    Inhibitor of apoptosis proteins, NAIP, cIAP1 and cIAP2 expression during macrophage differentiation and M1/M2 polarization

    Get PDF
    Monocytes and macrophages constitute the first line of defense of the immune system against external pathogens. Macrophages have a highly plastic phenotype depending on environmental conditions; the extremes of this phenotypic spectrum are a pro-inflammatory defensive role (M1 phenotype) and an anti-inflammatory tissue-repair one (M2 phenotype). The Inhibitor of Apoptosis (IAP) proteins have important roles in the regulation of several cellular processes, including innate and adaptive immunity. In this study we have analyzed the differential expression of the IAPs, NAIP, cIAP1 and cIAP2, during macrophage differentiation and polarization into M1 or M2. In polarized THP-1 cells and primary human macrophages, NAIP is abundantly expressed in M2 macrophages, while cIAP1 and cIAP2 show an inverse pattern of expression in polarized macrophages, with elevated expression levels of cIAP1 in M2 and cIAP2 preferentially expressed in M1. Interestingly, treatment with the IAP antagonist SMC-LCL161, induced the upregulation of NAIP in M2, the downregulation of cIAP1 in M1 and M2 and an induction of cIAP2 in M1 macrophages.This work was supported by Universidad de Granada, Plan Propio 2015;#P3B: FAM, VMC (http://investigacion.ugr.es/pages/planpropio/2015/ resoluciones/p3b_def_28072015); Universidad de Granada CEI BioTic;#CAEP2-84: VMC (http:// biotic.ugr.es/pages/resolucionprovisional enseaanzapractica22demayo/!); and Canadian nstitutes of Health Research;#231421, #318176, #361847: STB, ECL, RK (http://www.cihr-irsc.gc. ca/e/193.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands

    Get PDF
    14 páginas.- 4 figuras.- 67 referencias.- The online version contains supplementary material available at https://doi.org/10.1038/s41477-024-01670-7Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.This research was supported by the European Research Council (ERC grant 647038 (BIODESERT) awarded to F.T.M.) and Generalitat Valenciana (CIDEGENT/2018/041). D.J.E. was supported by the Hermon Slade Foundation (HSF21040). J. Ding was supported by the National Natural Science Foundation of China Project (41991232) and the Fundamental Research Funds for the Central Universities of China. M.D.-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/Unión Europea Next Generation EU/PRTR and the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. O.S. was supported by US National Science Foundation (Grants DEB 1754106, 20-25166), and Y.L.B.-P. by a Marie Sklodowska-Curie Actions Individual Fellowship (MSCA-1018 IF) within the European Program Horizon 2020 (DRYFUN Project 656035). K.G. and N.B. acknowledge support from the German Federal Ministry of Education and Research (BMBF) SPACES projects OPTIMASS (FKZ: 01LL1302A) and ORYCS (FKZ: FKZ01LL1804A). B.B. was supported by the Taylor Family-Asia Foundation Endowed Chair in Ecology and Conservation Biology, and M. Bowker by funding from the School of Forestry, Northern Arizona University. C.B. acknowledges funding from the National Natural Science Foundation of China (41971131). D.B. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096), and A. Fajardo support from ANID PIA/BASAL FB 210006 and the Millennium Science Initiative Program NCN2021-050. M.F. and H.E. received funding from Ferdowsi University of Mashhad (grant 39843). A.N. and M.K. acknowledge support from FCT (CEECIND/02453/2018/CP1534/CT0001, SFRH/BD/130274/2017, PTDC/ASP-SIL/7743/2020, UIDB/00329/2020), EEA (10/CALL#5), AdaptForGrazing (PRR-C05-i03-I-000035) and LTsER Montado platform (LTER_EU_PT_001) grants. O.V. acknowledges support from the Hungarian Research, Development and Innovation Office (NKFI KKP 144096). L.W. was supported by the US National Science Foundation (EAR 1554894). Y.Z. and X.Z. were supported by the National Natural Science Foundation of China (U2003214). H.S. is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union-Next Generation plan. The use of any trade, firm or product names does not imply endorsement by any agency, institution or government. Finally, we thank the many people who assisted with field work and the landowners, corporations and national bodies that allowed us access to their land.Peer reviewe

    Quality More Than Quantity: The Use of Carbohydrates in High-Fat Diets to Tackle Obesity in Growing Rats.

    No full text
    Childhood obesity prevention is important to avoid obesity and its comorbidities into adulthood. Although the energy density of food has been considered a main obesogenic factor, a focus on food quality rather that the quantity of the different macronutrients is needed. Therefore, this study investigates the effects of changing the quality of carbohydrates from rapidly to slowly digestible carbohydrates on metabolic abnormalities and its impact on obesity in growing rats fed a high-fat diet (HFD). Growing rats were fed on HFD containing carbohydrates with different digestion rates: a HFD containing rapid-digesting carbohydrates (OBE group) or slow-digesting carbohydrates (ISR group), for 4 weeks and the effect on the metabolism and signaling pathways were analyzed in different tissues. Animals from OBE group presented an overweight/obese phenotype with a higher body weight gain and greater accumulation of fat in adipose tissue and liver. This state was associated with an increase of HOMA index, serum diacylglycerols and triacylglycerides, insulin, leptin, and pro-inflammatory cytokines. In contrast, the change of carbohydrate profile in the diet to one based on slow digestible prevented the obesity-related adverse effects. In adipose tissue, GLUT4 was increased and UCPs and PPARγ were decreased in ISR group respect to OBE group. In liver, GLUT2, FAS, and SRBP1 were lower in ISR group than OBE group. In muscle, an increase of glycogen, GLUT4, AMPK, and Akt were observed in comparison to OBE group. In conclusion, this study demonstrates that the replacement of rapidly digestible carbohydrates for slowly digestible carbohydrates within a high-fat diet promoted a protective effect against the development of obesity and its associated comorbidities

    Plasma Levels of Omega-3 and Omega-6 Derived Oxylipins Are Associated with Fecal Microbiota Composition in Young Adults

    No full text
    Pre-clinical studies suggest that circulating oxylipins, i.e., the oxidation products of polyunsaturated fatty acids (PUFAs), modulate gut microbiota composition in mice, but there is no information available in humans. Therefore, this study aimed to investigate the relationship between omega-3 and omega-6 derived oxylipins plasma levels and fecal microbiota composition in a cohort of young adults. 80 young adults (74% women; 21.9 ± 2.2 years old) were included in this cross-sectional study. Plasma levels of oxylipins were measured using liquid chromatography-tandem mass spectrometry. Fecal microbiota composition was analyzed by V3-V4 16S rRNA gene sequencing. We observed that plasma levels of omega-3 derived oxylipins were positively associated with the relative abundance of Clostridium cluster IV genus (Firmicutes phylum; rho ≥ 0.415, p ≤ 0.009) and negatively associated with the relative abundance of Sutterella genus (Proteobacteria phylum; rho ≥ −0.270, p ≤ 0.041), respectively. Moreover, plasma levels of omega-6 derived oxylipins were negatively associated with the relative abundance of Acidaminococcus and Phascolarctobacterium genera (Firmicutes phylum; all rho ≥ −0.263, p ≤ 0.024), as well as Sutterella, Succinivibrio, and Gemmiger genera (Proteobacteria phylum; all rho ≥ −0.263, p ≤ 0.024). Lastly, the ratio between omega-6 and omega-3 oxylipins plasma levels was negatively associated with the relative abundance of Clostridium cluster IV genus (Firmicutes phylum; rho = −0.334, p = 0.004) and Butyricimonas genus (Bacteroidetes phylum; rho = −0.292, p = 0.014). In conclusion, our results show that the plasma levels of omega-3 and omega-6 derived oxylipins are associated with the relative abundance of specific fecal bacteria genera
    corecore