2,729 research outputs found

    Energy Distribution in disordered elastic Networks

    Get PDF
    Disordered networks are found in many natural and artificial materials, from gels or cytoskeletal structures to metallic foams or bones. Here, the energy distribution in this type of networks is modeled, taking into account the orientation of the struts. A correlation between the orientation and the energy per unit volume is found and described as a function of the connectivity in the network and the relative bending stiffness of the struts. If one or both parameters have relatively large values, the struts aligned in the loading direction present the highest values of energy. On the contrary, if these have relatively small values, the highest values of energy can be reached in the struts oriented transversally. This result allows explaining in a simple way remodeling processes in biological materials, for example, the remodeling of trabecular bone and the reorganization in the cytoskeleton. Additionally, the correlation between the orientation, the affinity, and the bending-stretching ratio in the network is discussed

    Some Remarks on the Model Theory of Epistemic Plausibility Models

    Full text link
    Classical logics of knowledge and belief are usually interpreted on Kripke models, for which a mathematically well-developed model theory is available. However, such models are inadequate to capture dynamic phenomena. Therefore, epistemic plausibility models have been introduced. Because these are much richer structures than Kripke models, they do not straightforwardly inherit the model-theoretical results of modal logic. Therefore, while epistemic plausibility structures are well-suited for modeling purposes, an extensive investigation of their model theory has been lacking so far. The aim of the present paper is to fill exactly this gap, by initiating a systematic exploration of the model theory of epistemic plausibility models. Like in 'ordinary' modal logic, the focus will be on the notion of bisimulation. We define various notions of bisimulations (parametrized by a language L) and show that L-bisimilarity implies L-equivalence. We prove a Hennesy-Milner type result, and also two undefinability results. However, our main point is a negative one, viz. that bisimulations cannot straightforwardly be generalized to epistemic plausibility models if conditional belief is taken into account. We present two ways of coping with this issue: (i) adding a modality to the language, and (ii) putting extra constraints on the models. Finally, we make some remarks about the interaction between bisimulation and dynamic model changes.Comment: 19 pages, 3 figure

    Endmember extraction algorithms from hyperspectral images

    Get PDF
    During the last years, several high-resolution sensors have been developed for hyperspectral remote sensing applications. Some of these sensors are already available on space-borne devices. Space-borne sensors are currently acquiring a continual stream of hyperspectral data, and new efficient unsupervised algorithms are required to analyze the great amount of data produced by these instruments. The identification of image endmembers is a crucial task in hyperspectral data exploitation. Once the individual endmembers have been identified, several methods can be used to map their spatial distribution, associations and abundances. This paper reviews the Pixel Purity Index (PPI), N-FINDR and Automatic Morphological Endmember Extraction (AMEE) algorithms developed to accomplish the task of finding appropriate image endmembers by applying them to real hyperspectral data. In order to compare the performance of these methods a metric based on the Root Mean Square Error (RMSE) between the estimated and reference abundance maps is used

    Annotating Synapses in Large EM Datasets

    Full text link
    Reconstructing neuronal circuits at the level of synapses is a central problem in neuroscience and becoming a focus of the emerging field of connectomics. To date, electron microscopy (EM) is the most proven technique for identifying and quantifying synaptic connections. As advances in EM make acquiring larger datasets possible, subsequent manual synapse identification ({\em i.e.}, proofreading) for deciphering a connectome becomes a major time bottleneck. Here we introduce a large-scale, high-throughput, and semi-automated methodology to efficiently identify synapses. We successfully applied our methodology to the Drosophila medulla optic lobe, annotating many more synapses than previous connectome efforts. Our approaches are extensible and will make the often complicated process of synapse identification accessible to a wider-community of potential proofreaders

    Plastic deformation at high temperatures of pure and Mn-doped GaSb

    Get PDF
    In this work the plastic behavior of GaSb and Mn-doped GaSb at high temperature has been analyzed. Several experiments at different constant load and temperatures around 500 °C were carried out. The parameters used in the Haasen model have been obtained experimentally and compared with the ones obtained from simulations
    • 

    corecore