112 research outputs found

    Single cell analysis of kynurenine and System L amino acid transport in T cells

    Get PDF
    Acknowledgements We thank Cantrell group members for their critical discussion of the data, the Biological Resources unit, Sarah Thomson (for rLM work) and the Flow Cytometry facility (A. Whigham and R. Clarke) at the University of Dundee. This work was supported by the Wellcome Trust (Principal Research Fellowship to D.A.C. 097418/Z/11/Z and 205023/Z/16/Z, and Wellcome Trust Equipment Award 202950/Z/16/Z).Peer reviewedPublisher PD

    The role of versican isoforms V0/V1 in glioma migration mediated by transforming growth factor-β2

    Get PDF
    Versican is a large chondroitin sulphate proteoglycan produced by several tumour cell types, including high-grade glioma. The increased expression of certain versican isoforms in the extracellular matrix (ECM) plays a role in tumour cell growth, adhesion and migration. Transforming growth factor-β2 (TGF-β2) is an important modulator of glioma invasion, partially by remodeling the ECM. However, it is unknown whether it interacts with versican during malignant progression of glioma cells. Here, we analysed the effect of TGF-β2 on the expression of versican isoforms. The expression of versican V0/V1 was upregulated by TGF-β2 detected by quantitative polymerase chain reaction and immunoprecipitation, whereas V2 was not induced. Using time-lapse scratch and spheroid migration assays, we observed that the glioma migration rate is significantly increased by exogenous TGF-β2 and inhibited by TGF-β2-specific antisense oligonucleotides. Interestingly, an antibody specific for the DPEAAE region of glycosaminoglycan-β domain of versican was able to reverse the effect of TGF-β2 on glioma migration in a dose-dependent manner. Taken together, we report here that TGF-β2 triggers the malignant phenotype of high-grade gliomas by induction of migration, and that this effect is, at least in part, mediated by versican V0/V1

    Domestication history and geographical adaptation inferred from a SNP map of African rice

    Get PDF
    African rice (Oryza glaberrima Steud.) is a cereal crop species closely related to Asian rice (Oryza sativa L.) but was independently domesticated in West Africa-3,000 years ago. African rice is rarely grown outside sub-Saharan Africa but is of global interest because of its tolerance to abiotic stresses. Here we describe a map of 2.32 million SNPs of African rice from whole-genome resequencing of 93 landraces. Population genomic analysis shows a population bottleneck in this species that began-13,000-15,000 years ago with effective population size reaching its minimum value-3,500 years ago, suggesting a protracted period of population size reduction likely commencing with predomestication management and/or cultivation. Genome-wide association studies (GWAS) for six salt tolerance traits identify 11 significant loci, 4 of which are within-300 kb of genomic regions that possess signatures of positive selection, suggesting adaptive geographical divergence for salt tolerance in this species

    A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing

    Get PDF
    The HKT family of Na+ and Na+/K+ transporters is implicated in plant salinity tolerance. Amongst these transporters, the cereal HKT1;4 and HKT1;5 are responsible for Na+ exclusion from photosynthetic tissues, a key mechanism for plant salinity tolerance. It has been suggested that Na+ is retrieved from the xylem transpiration stream either in the root or the leaf sheath, protecting the leaf blades from excessive Na+ accumulation. However, direct evidence for this scenario is scarce. Comparative modeling and evaluation of rice (Oryza sativa) HKT-transporters based on the recent crystal structure of the bacterial TrkH K+ transporter allowed to reconcile transcriptomic and physiological data. For OsHKT1;5, both transcript abundance and protein structural features within the selectivity filter could control shoot Na+ accumulation in a range of rice varieties. For OsHKT1;4, alternative splicing of transcript and the anatomical complexity of the sheath needed to be taken into account. Thus, Na+ accumulation in a specific leaf blade seems to be regulated by abundance of a correctly spliced OsHKT1;4 transcript in a corresponding sheath. Overall, allelic variation of leaf blade Na+ accumulation can be explained by a complex interplay of gene transcription, alternative splicing and protein structure.Olivier Cotsaftis, Darren Plett, Neil Shirley, Mark Tester and Maria Hrmov

    Light and Temperature Signalling at the Level of CBF14 Gene Expression in Wheat and Barley

    Full text link
    The wheat and barley CBF14 genes have been newly defined as key components of the light quality-dependent regulation of the freezing tolerance by the integration of phytochrome-mediated light and temperature signals. To further investigate the wavelength dependence of light-induced CBF14 expression in cereals, we carried out a detailed study using monochromatic light treatments at an inductive and a non-inductive temperature. Transcript levels of CBF14 gene in winter wheat Cheyenne, winter einkorn G3116 and winter barley Nure genotypes were monitored. We demonstrated that (1) CBF14 is most effectively induced by blue light and (2) provide evidence that this induction does not arise from light-controlled CRY gene expression. (3) We demonstrate that temperature shifts induce CBF14 transcription independent of the light conditions and that (4) the effect of temperature and light treatments are additive. Based on these data, it can be assumed that temperature and light signals are relayed to the level of CBF14 expression via separate signalling routes

    Relevance of tumor-infiltrating lymphocytes in breast cancer

    Full text link
    corecore