230 research outputs found

    Prediction of gas-liquid two-phase flow regime in microgravity

    Get PDF
    An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations

    Protecting Reliance on the Patent System: The Economics and Equities of Intervening Rights

    Get PDF

    2′-3′-Cyclic Nucleotide 3′-Phosphodiesterase Inhibition by Organometallic Vanadium Complexes: A Potential New Paradigm for Studying CNS Degeneration

    Get PDF
    The enzyme, 2′-3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) has been known for over fifty years. Nevertheless, the roles this membrane-bound enzyme play have yet to be described completely. Recently, there has been renewed interest in the study of this enzyme due to studies that suggest that CNPase plays a role in the mediation of cellular inflammatory responses in renal and nervous system tissues. Also, this enzyme, found in oligodendrocytes of the nervous system, has been reported to participate in significant regulatory changes associated with age which may be involved in age-related CNS degeneration. Consequently, development of CNPase inhibitors is of interest and should aid in the study of this, as yet, poorly understood enzyme. In this work we utilized a spectrophotometric enzyme assay to determine the effect a panel of organo-vanadium complexes had on isolated hamster myelin CNPase activity. Our group has now identified several potent in vitro CNPase inhibitors that could prove useful in clarifying the important roles of this enzyme

    Groundcover community assembly in high-diversity pine savannas: seed arrival and fire-generated environmental filtering

    Get PDF
    Environmental filtering—abiotic and biotic constraints on the demographic performance of individual organisms—is a widespread mechanism of selection in communities. A given individual is “filtered out” (i.e., selectively removed) when environmental conditions or disturbances like fires preclude its survival and reproduction. Although interactions between these filters and dispersal from the regional species pool are thought to determine much about species composition locally, there have been relatively few studies of dispersal × filtering interactions in species-rich communities and fewer still where fire is also a primary selective agent. We experimentally manipulated dispersal and filtering by fire (pre-fire fuel loads and post-fire ash) in species-rich groundcover communities of the longleaf pine ecosystem. We tested four predictions: (1) That species richness would increase with biologically realistic dispersal (seed addition); (2) that the immediate effect of increased fuels in burned communities would be to decrease species richness, whereas the longer-term effects of increased fuels would be to open recruitment opportunities in the groundcover, increase species richness, and increase individual performance (growth) of immigrating species; (3) that adding ash would increase species richness; and (4) that increased dispersal would generate larger increases in species richness in plots with increased fuels compared to plots with decreased fuels. We found that dispersal interacted with complex fire-generated filtering during and after fires. Dispersal increased species richness more in burned communities with increased and decreased fuels compared to burned controls. Moreover, individuals of immigrating species generally grew to larger sizes in burned communities with increased fuels compared to burned controls. In contrast to dispersal and fuels, ash had no effect on species richness directly or in combination with other treatments. We conclude that filtering occurs both during fires and in the post-fire environment and that these influences interact with dispersal such that the consequences are only fully revealed when all are considered in combination. Our experiment highlights the importance of considering the dynamic interplay of dispersal and selection in the assembly of species-rich communities

    A human STAT1 gain-of-function mutation impairs CD8 + T cell responses against gammaherpesvirus 68

    Get PDF
    Autosomal dominant STAT1 mutations in humans have been associated with chronic mucocutaneous candidiasis (CMC), as well as with increased susceptibility to herpesvirus infections. Prior studies have focused on mucosal and Th17-mediated immunity agains

    Does pyrogenicity protect burning plants?

    Get PDF
    Pyrogenic plants dominate many fire-prone ecosystems. Their prevalence suggests some advantage to their enhanced flammability, but researchers have had difficulty tying pyrogenicity to individual-level advantages. Based on our review, we propose that enhanced flammability in fire-prone ecosystems should protect the belowground organs and nearby propagules of certain individual plants during fires. We base this hypothesis on five points: (1) organs and propagules by which many fire-adapted plants survive fires are vulnerable to elevated soil temperatures during fires; (2) the degree to which burning plant fuels heat the soil depends mainly on residence times of fires and on fuel location relative to the soil; (3) fires and fire effects are locally heterogeneous, meaning that individual plants can affect local soil heating via their fuels; (4) how a plant burns can thus affect its fitness; and (5) in many cases, natural selection in fire-prone habitats should therefore favor plants that burn rapidly and retain fuels off the ground. We predict an advantage of enhanced flammability for plants whose fuels influence local fire characteristics and whose regenerative tissues or propagules are affected by local variation in fires. Our pyrogenicity as protection hypothesis has the potential to apply to a range of life histories. We discuss implications for ecological and evolutionary theory and suggest considerations for testing the hypothesis. © 2010 by the Ecological Society of America

    Fuels and fires influence vegetation via above- and below-ground pathways in a high-diversity plant community

    Get PDF
    1. Fire strongly influences plant populations and communities around the world, making it an important agent of plant evolution. Fire influences vegetation through multiple pathways, both above- and belowground. Few studies have yet attempted to tie these pathways together in a mechanistic way through soil heating even though the importance of soil heating for plants in fire-prone ecosystems is increasingly recognized. 2. Here we combine an experimental approach with structural equation modelling (SEM) to simultaneously examine multiple pathways through which fire might influence herbaceous vegetation. In a high-diversity longleaf pine groundcover community in Louisiana, USA, we manipulated fine-fuel biomass and monitored the resulting fires with high-resolution thermocouples placed in vertical profile above- and belowground. 3. We predicted that vegetation response to burning would be inversely related to fuel load owing to relationships among fuels, fire temperature, duration and soil heating. 4. We found that fuel manipulations altered fire properties and vegetation responses, of which soil heating proved to be a highly accurate predictor. Fire duration acting through soil heating was important for vegetation response in our SEMs, whereas fire temperature was not. 5. Our results indicate that in this herbaceous plant community, fire duration is a good predictor of soil heating and therefore of vegetation response to fire. Soil heating may be the key determinant of vegetation response to fire in ecosystems wherein plants persist by resprouting or reseeding from soil-stored propagules. 6. Synthesis. Our SEMs demonstrate how the complex pathways through which fires influence plant community structure and dynamics can be examined simultaneously. Comparative studies of these pathways across different communities will provide important insights into the ecology, evolution and conservation of fire-prone ecosystems

    Dilated renal collecting systems:Differentiating obstructive from nonobstructive dilation using duplex doppler ultrasound

    Full text link
    Two patients with ileal loop urinary diversions, studied with real-time and Doppler sonogphy ("duplex sonography") of the kidneys, were shown to have dilated intrarenal collecting Resistive index measurements calculated from the Doppler signal correctly identified obstructive dilatation in 1 case and nonobstructive dilatation in the other.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29467/1/0000553.pd
    • …
    corecore