111 research outputs found

    Structural and electronic properties of β-NaYF4 and β-NaYF4:Ce3+

    Get PDF
    AP is indebted for a financial support provided by Scientific Research Project grant for Students and Young Researchers Nr. SJZ/2017/3 sponsored at the Institute of Solid State Physics, University of Latvia , while AIP is thankful for the financial support from Latvian Research Council lzp-2018/1-0214 .In this work, the density functional theory approach with linear combination of atomic orbitals (LCAO) as implemented in the CRYSTAL17 computer code is applied to hexagonal β-NaYF4, located in three possible space groups of this compound: P6‾, P63/m and P6‾ 2 m. First, the disordered crystalline structure of NaYF4 was modelled in a large supercell containing 108 atoms. In order to obtain better agreement with the experimental data, we used several different exchange-correlation functionals. Basic properties, such as lattice constant, band gap and total energies were calculated and compared for all three space groups and three exchange-correlation functionals - HSE06, PWGGA and PWGGA+13%HF. It was found that for all three functionals, the minimum of total energy corresponds to P6‾ space group. Secondly, in order to study the effects associated with the Ce3+ impurity and the F center (radiation defect), the P6‾ β-NaYF4 structure with the F center and Ce3+ or with both was carefully modelled. Taking into account that fluorine atoms have different nearest neighbours, several types of fluorine vacancies were simulated and an appropriate formation energies were determined. Finally, the effects of Ce3+ ion substitution of Y ions in different positions as well as formation of Ce3+, the F center defect pairs were also studied and an appropriate incorporation energies were calculated.University of Latvia; Latvian Research Council lzp-2018/1-0214; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART²https://www.sciencedirect.com/science/article/pii/S0925346719307499?via%3Dihu

    The Electronic Structures and Energies of the Lowest Excited States of the Ns0, Ns+, Ns− and Ns-H Defects in Diamond

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (grant agreement No. 101052200—EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. AP also acknowledges, with thanks, the financial support provided by “Strengthening of the capacity of doctoral studies at the University of Latvia within the framework of the new doctoral model”, No. 8.2.2.0/20/I/006, and Scientific Research Project for Students and Young Researchers, Nr. SJZ/2021/5 implemented at the Institute of Solid State Physics, University of Latvia.This paper reports the energies and charge and spin distributions of the mono-substituted N defects, N0s, N+s, N−s and Ns-H in diamonds from direct Δ-SCF calculations based on Gaussian orbitals within the B3LYP function. These predict that (i) Ns0, Ns+ and Ns− all absorb in the region of the strong optical absorption at 270 nm (4.59 eV) reported by Khan et al., with the individual contributions dependent on the experimental conditions; (ii) Ns-H, or some other impurity, is responsible for the weak optical peak at 360 nm (3.44 eV); and that Ns+ is the source of the 520 nm (2.38 eV) absorption. All excitations below the absorption edge of the diamond host are predicted to be excitonic, with substantial re-distributions of charge and spin. The present calculations support the suggestion by Jones et al. that Ns+ contributes to, and in the absence of Ns0 is responsible for, the 4.59 eV optical absorption in N-doped diamonds. The semi-conductivity of the N-doped diamond is predicted to rise from a spin-flip thermal excitation of a CN hybrid orbital of the donor band resulting from multiple in-elastic phonon scattering. Calculations of the self-trapped exciton in the vicinity of Ns0 indicate that it is essentially a local defect consisting of an N and four nn C atoms, and that beyond these the host lattice is essential a pristine diamond as predicted by Ferrari et al. from the calculated EPR hyperfine constants. © 2023 by the authors.--//-- This is an open access article Platonenko A., Mackrodt W.C., Dovesi R.; The Electronic Structures and Energies of the Lowest Excited States of the Ns0, Ns+, Ns− and Ns-H Defects in Diamond; (2023) Materials, 16 (5), art. no. 1979; DOI: 10.3390/ma16051979; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149871852&doi=10.3390%2fma16051979&partnerID=40&md5=b11fbcbf91ce1013d1a0e817573fd2fe published under the CC BY 4.0 licence.EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (grant agreement No. 101052200—EUROfusion); Latvijas Universitate 8.2.2.0/20/I/006, SJZ/2021/5; Scientific Research Project for Students and Young Researchers, Nr. SJZ/2021/5 implemented at the Institute of Solid State Physics, University of Latvia; the Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01–2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    Modifications of high harmonic spectra by ion resonant transitions

    Get PDF
    High-order harmonic generation is considered in a system consisting of an ion with an internal degree of freedom plus an outer electron. The theoretical treatment is both quantum-mechanical and classical. The emphasis is on the core resonance effects, which can significantly modify the harmonic spectra, with appearance of anomalous peaks. Under some assumptions, the spectral amplitude of the resonant harmonic of the system dipole moment can be obtained by evaluation of such amplitude within a single-electron approximation and multiplication of the result by a correcting factor. The latter depends on the polarizability of the ion and of a free electron at the harmonic frequency. Copyright \ua9 1996 by MAHK Hayka/Interperiodica Publishing

    Analysis of Implementation Results of the Distributed Access Control System

    Get PDF
    This paper attempts to create software and hardware complex that can work autonomously and designed to simplify the organization of scientific conferences. The goal of developing a complex is to give an opportunity to attendees of the conference to register to conference sections using radio frequency identification (RFID) tags and collect statistics of sections attendance in real time. The paper describes the development process of the complex, problems that encounters during the development process and ways to fix it

    Ab initio simulations on charged interstitial oxygen migration in corundum

    Get PDF
    We have performed this work within the framework of the EUROfusion Consortium receiving funding from the European grant agreement 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Authors thank R. Vila, A.I. Popov, A. Luchshik and R.A. Evarestov for fruitful discussions. To carry out large-scale calculations, we have used the HPC supercomputer at Stuttgart University (Germany)We have calculated possible migration trajectories for single-charged interstitial Oi− anion using large-scale hybrid density functional theory within linear combination of atomic orbitals approach to defective α-Al2O3 crystals. The most energetically favorable configuration for charged Oi− anion is formation of pseudo-dumbbell (split interstitial) with a regular Oreg ion. For charged interstitial oxygen migration, the energy barrier turns out to be ∼0.8–1.0 eV. This is considerably smaller than that for a neutral interstitial atoms (1.3 eV), in agreement with experimental data.EUROfusion Consortium receiving funding from the European grant agreement 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Use of near field communication technology for automated profile replication

    Get PDF
    The following work contains the development of a method of using NFC technology for automated user profile replication. The proposed method is user-friendly, allows for smartphone-based user authentication

    Pair vacancy defects in β-Ga2O3 crystal: Ab initio study

    Get PDF
    This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856540). This research was partly performed at the Institute of Solid State Physics, University of Latvia (ISSP UL). ISSP UL as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2.Despit many studies dedicated to the defects in β-Ga2O3, information about formation processes of complex “donor-acceptor” defects in β-Ga2O3 and their energetic characteristics is still very scarce. Meanwhile, complex defects, such as pair vacancies, are often indicated as electrically active centers that can play the role of acceptor defects. We have carried out comparative ab initio study of formation energies, as well as optical and thermodynamic transition levels of single and pair vacancies in β-Ga2O. It was confirmed that single gallium and oxygen vacancies are deep acceptors and deep donors, respectively. In this case, the optical transition levels of single gallium and oxygen vacancies are located in such a way that electrons can easily pass from donors to acceptors. Unlike single vacancies, a pair vacancy has a neutral state due to the location of the acceptor levels above the donor ones. However, if pair vacancies were thermally excited, the transition levels are shifted to ∼2.0 eV above the top of the valence band, at which the recombination of electrons and holes become possible, as is observed in the case of single vacancies. --//--Abay Usseinov, Alexander Platonenko, Zhanymgul Koishybayeva, Abdirash Akilbekov, Maxim Zdorovets, Anatoli I. Popov, Pair vacancy defects in β-Ga2O3 crystal: Ab initio study, Optical Materials: X, Volume 16, 2022, 100200, ISSN 2590-1478, https://doi.org/10.1016/j.omx.2022.100200. This article is published under the CC BY-NC-ND licence.Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856540); ISSP UL as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2

    Nitrogen substitutional defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties

    Get PDF
    RD and FSG acknowledges the CINECA award (HP10CTG8YY) under the ISCRA initiative, for the availability of high performance computing resources and support.The vibrational infrared (IR) and Raman spectra of seven substitutional defects in bulk silicon are computed, by using the quantum mechanical CRYSTAL code, the supercell scheme, an all electron Gaussian type basis set and the B3LYP functional. The relative stability of various spin states has been evaluated, the geometry optimized, the electronic structure analyzed. The IR and Raman intensities have been evaluated analitically. In all cases the IR spectrum is dominated by a single N peak (or by two or three peaks with very close wavenumbers), whose intensity is at least 20 times larger than the one of any other peak. These peaks fall in the 645–712 cm−1 interval, and a shift of few cm−1 is observed from case to case. The Raman spectrum of all defects is dominated by an extremely intense peak at about 530 cm−1, resulting from the (weak) perturbation of the peak of pristine silicon.ISCRA initiative CINECA award (HP10CTG8YY); Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Water Splitting on Multifaceted SrTiO3 Nanocrystals: Calculations of Raman Vibrational Spectrum

    Get PDF
    The financial support of M-ERA.net SunToChem project is greatly acknowledged by L.L.R. and Y.A.M. This paper is partly based upon COST (European Cooperation in Science and Technology) Action 18234 Short Term Scientific Mission. The support is greatly acknowledged by E.K. and V.K. The Institute of Solid State Physics, University of Latvia (Latvia) as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Frame-work Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2. The computer resources were provided by the Stuttgart Supercomputing Center (HLRS project DEFTD 12939) and Latvian Super Cluster (LASC).Various photocatalysts are being currently studied with the aim of increasing the photocatalytic efficiency of water splitting for production of hydrogen as a fuel and oxygen as a medical gas. A noticeable increase of hydrogen production was found recently experimentally on the anisotropic faces (facets) of strontium titanate (SrTiO3, STO) nanoparticles. In order to identify optimal sites for water splitting, the first principles calculations of the Raman vibrational spectrum of the bulk and stepped (facet) surface of a thin STO film with adsorbed water derivatives were performed. According to our calculations, the Raman spectrum of a stepped STO surface differs from the bulk spectrum, which agrees with the experimental data. The characteristic vibrational frequencies for the chemisorption of water derivatives on the surface were identified. Moreover, it is also possible to distinguish between differently adsorbed hydrogen atoms of a split water molecule. Our approach helps to select the most efficient (size and shape) perovskite nanoparticles for efficient hydrogen/oxygen photocatalytic production. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.M-ERA.net SunToChem project; COST Action 18234 Short Term Scientific Mission; LRS project DEFTD 12939; the Institute of Solid State Physics, University of Latvia as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Frame-work Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2
    corecore