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1. INTRODUCTION

Generation of harmonics of high order, occurring in
processes of interaction of short-pulse intense laser radi-
ation with atoms and ions in gas jets, and with nondense
plasmas, in recent years has become, and presently is,
one of the most thoroughly investigated subjects in laser
and laser–atomic physics. See [1–8] for useful summa-
ries and discussions of the issues considered below.

Investigations are driven in an essential way by the
perspective of creating coherent sources of electromag-
netic radiation with increasingly shorter wavelength.
Experiments are continuously reported in which har-
monics of shorter and shorter wavelengths are
observed. At the moment, the shortest wavelength
seems to be about 6 nm [8, 9]. However, much effort
needs still to be done to remove the practical limitations
inherent in the goal of obtaining intense short-wave-
length coherent light by the high-order harmonic gen-
eration. Among them, we quote, as an instance, the
limit to the high-order harmonic conversion put by the
ionization of a nonlinear medium exposed to a high-
intensity laser field. This item poses the problem of
optimizing the choice of the generating nonlinear
medium. Experiments indicate that when neutral rare
gases are used in nonlinear medium, species with
higher ionization potentials should be preferred [10].
Alternatively, ionic species are becoming important,
such as the alkali or other elements with a wide variety
of atomic numbers and electron configurations [4, 5, 8].
Presently, most of the experimental investigations are
concerned with the removal of this limitation.

Another important limitation is the very low con-
version efficiency, to which, however, less attention has
been devoted. This issue, in particular, was addressed

in [11, 12] where, optimizing the choice of experimen-
tal conditions, in a medium of Xenon rare gas the effi-
ciency of conversion of a 1-ps 1053-nm Nd-glass laser
radiation at 10

 

15

 

 W/cm

 

2

 

 intensity into the 17th har-
monic (20 eV) has been brought up to 10

 

–6

 

, with an
instantaneous power generated of about 30 kW. Theo-
retically, physical situations that are able, in principle,
to yield more effective conversion efficiencies are con-
sidered in [13, 14]. In particular, in [13], using a simple
phenomenological approach, the case when harmonic
emission spectrum of an outer electron was significantly
enhanced at selected frequencies, corresponding to reso-
nant transitions of the core electrons, was addressed.

It is the aim of this paper to provide a quantitative treat-
ment (mostly, quantum mechanical) of a physical process
similar to that considered in [13], in which resonant tran-
sitions of core electrons alter the harmonic spectrum emit-
ted by an outer electron. More precisely, we consider a
model atom formed by a core with internal degrees of
freedom plus an outer electron. In general, the atomic core
states will undergo nonadiabatic changes if the position of
the outer electron experiences fast changes. Accordingly,
when high-frequency harmonics are generated, in the
atomic core should take place effects bound to the nona-
diabacity of the process. In turn, they could significantly
affect the harmonics spectrum. For instance, it is natural to
expect that some exciting frequencies might provide res-
onant growth of harmonics with frequencies close to
atomic core eigenfrequencies, or, the contrary, cause sup-
pression. Such effects should manifest themselves in
the energy distribution of the ionization products and in
the spectra of the emitted radiation. To the best of our
knowledge, in the context of high-order harmonic gener-
ation, such a mechanism and atomic models going
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beyond the one-electron approximation have never been
considered before, except for the phenomenological
approach mentioned above [13]. We note also that
some aspects of harmonic generation experiments
implying the potential importance and role of ions have
been discussed theoretically within one-electron treat-
ments in various papers [15–17].

Below, a quantum-mechanical treatment of har-
monic generation by a many-electron model atom
experiencing resonant core electron transitions is
worked out under the basic assumption that the geomet-
rical dimensions of the atomic core are small as com-
pared to the dimensions of the outer electron wave
packet. Besides, we work out a classical model of high-
order harmonic generation by a system of an “ion with
internal degree of freedom plus an outer electron,” and
discuss the results of numerical calculations based on
this model. Combining the results of the classical
model with those of the quantum-mechanical treatment
helps to understand how resonant transitions in the
atomic core may alter the harmonic spectrum.

2. QUANTUM-MECHANICAL TREATMENT

We treat the ion (the atomic core) and the outer elec-
tron as two subsystems with degrees of freedom 

 

x

 

 and

 

r

 

 and Hamiltonians 

 

H

 

x

 

 and 

 

H

 

r

 

 interacting with each
other through the potential 

 

V

 

(

 

x

 

, 

 

r

 

). The Hamiltonian of
the whole system in the presence of the light wave field

 

E

 

W

 

(

 

t

 

) is then written as

, (1)

where 

 

d

 

 is the dipole moment of the atomic core.
Below, in working out the present treatment, the fol-
lowing assumptions are made:

(1) the probability of ionization of the ion is negli-
gible [it puts a limitation on the field strength 

 

E

 

W

 

(

 

t

 

)];
(2) at the same time, the transition probability of the ion
into one of the excited states of the discrete spectrum is
finite; and (3) as anticipated, the geometrical dimen-
sions of the ion in such states are small as compared to
the dimensions of the outer electron wave packet.

Then, neglecting the particles identity, the state 

 

Ψ

 

(

 

x

 

, 

 

r

 

)
of the whole system is written as

, (2)

where 

 

�

 

j

 

 and 

 

u

 

j

 

 are the ion eigenenergies and eigen-
states, i.e., 

 

H

 

x

 

u

 

j

 

 = 

 

�

 

j

 

u

 

j

 

. Below, we assume that in the
absence of the external field, only the state 

 

u

 

0

 

ψ

 

0

 

 con-
tributes to the sum in (2). According to (2), the dipole
moment mean value of the whole system is written as
the sum –

 

e

 

r

 

e

 

 + 

 

D

 

c

 

, where

, (3)

, (4)

H Hx Hr V x r,( ) er EW d EW⋅–⋅+ + +=

Ψ i
� j

�
----t–⎝ ⎠

⎛ ⎞exp u j x( )ψ j r t,( )
j

∑=

re ψ j r ψ j〈 〉
j

∑=

Dc iω jkt–( )exp d jk ψ j ψk〈 〉
jk

∑=

 

, (5)

, (6)

and for the outer electron wavefunction 

 

ψ

 

j

 

, the follow-
ing equation is readily obtained:

(7)

where 

 

V

 

jk

 

(

 

r

 

) = 

 

〈

 

u

 

j

 

|

 

V

 

(

 

x

 

, 

 

r

 

)

 

|

 

u

 

k

 

〉

 

 and summation over the
index 

 

k

 

 in the right-hand side is understood.

Let us assume that the ion transition frequencies 

 

ω

 

jk

 

largely exceed the most significant frequencies of the
harmonics present in (3). In such a case, any term on the
right-hand side of (7) containing exp(

 

i

 

ω

 

jk

 

) is rapidly
oscillating and can be omitted as very small. Then (7)
becomes a one-electron equation. If, instead, (3) con-
tains significant harmonics with frequencies compara-
ble to 

 

ω

 

jk

 

, the function 

 

ψ

 

k

 

 has rapidly oscillating com-
ponents, which, when multiplied by exp(

 

i

 

ω

 

jk

 

t

 

), can give
nonnegligible contributions to (7). In particular, it will
cause the appearance of new not small terms in (4) for
the ion dipole moment. Such terms may be estimated
on the basis of the following considerations. First,
exploiting the well-known expansion

, (8)

with 

 

P

 

n

 

 as the Legendre polynomials, we write

(9)

with 

 

Ze

 

 as the nuclear charge, 

 

d

 

 = –

 

e

 

 being the sum
extended over all the core electrons, 

 

z

 

c

 

 = 

 

Z

 

 – 

 

n

 

0

 

, and

(10)

Exploiting now the assumption of small geometrical
dimensions of the core ion as compared to the electron
wave packet, 

 

δ

 

V

 

i

 

 is neglected and 

 

V

 

(

 

x

 

, 

 

r

 

) is written as

, (11)

where

(12)
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and

(13)

is the field created by the outer electron at the center of
the ion (center of coordinates).

From (11) it follows that the diagonal matrix ele-
ment Vjj(r) does not depend (within the employed
approximation) on j, and that

(14)

[expression (11), which is exact for a pointlike nucleus,
may be viewed also as the result of the electron being on
the average at a distance from the ion much larger than the
ion dimensions]. We assume, next, that the ion remains in
its ground state u0 with a probability close to unity;
accordingly, for j ≠ 0, we have 〈ψj|ψj〉 � 〈ψ0|ψ0〉 � 1, and
we can write

(15)

with the term φj orthogonal to ψ0. Substitution of (15)
into (3) and (4) causes the appearance of small terms
proportional to 〈φj |φk〉 which in what follows will be
neglected. As for aj, from (1), (2), and (7)–(15) we have

, (16)

with E = EW + Ee(t) and

(17)

and small terms containing 〈ψ0 |Ee(r) |ψk〉 in the right-
hand side of (16) neglected. Integrating (16) and using
(15) and (4) for the harmonic amplitude, we obtain

, (18)

where

(19)

and Ee(Ω) is the spectral amplitude of the field Ee(t) (17).
To be valid, expression (18) requires that the Stark shift
of any level significantly contributing to it be small as
compared to the value � |ωk0 – Ω|:

. (20)

In (20), E(ω) = Ee(ω) + EW(ω) is the field amplitude at
the fundamental frequency ω, and the polarizability αk
can be obtained from αion (19) substituting the index k
for 0.

Somewhat more complicated is to obtain a relation
between Ee(Ω) and de(Ω) = –ere(Ω). For the purpose,
we use the Ehrenfest theorem for the average values of
coordinates and moments. Using the Hamiltonian (1)
and the assumptions formulated above, for the average
value re = 〈Ψ|r |Ψ〉 the following equation is obtained:

(21)

Ee r( ) er

r
3

-----=

V jk d– Ee r( )⋅=

ψ j a j t( )ψ0 φ j+=

i�ȧ j  � e
iω j0t( )

d j0– E⋅

Ee t( ) ψ0 Ee r( ) ψ0〈 〉 ,=

Dc Ω( ) αion Ω( )Ee Ω( )=

αion d j0
2 2ω j0

ω j0
2 Ω2

–( )
-------------------------

j

∑=

1
4
---αkE ω( )2

� ωk0 Ω–<

m ṙ̇e e EW zcEe Ed+ +( )–=

with

(22)

From (21) one easily obtains
. (23)

The first term in this expression can be treated as the
moment evaluated in the single-electron approximation
[as a matter of fact, under the condition djk = 0, (7) coin-
cides with the equation of the single-electron theory].
We now write the whole moment of the system “ion
plus electron” as the sum of the first term of (23) and of
(18), it amounting to reproduce the dipole moment phe-
nomenologically postulated in [13], namely

(24)

Thus, the present derivation constitutes a justification of
(24), where now the basic assumptions and limitations
are clearly and explicitly formulated. αe = –e2/(mΩ2) is
the free electron polarizability.

In obtaining (24) we have, in practice, neglected the
field Ed. The role of this field is certainly decreasing
with the increasing of the electron wave packet dimen-
sions; but it is difficult to investigate this role quantita-
tively. Besides, the neglected term of (23) represents
the influence of the ion dipole moment on the electron
trajectory. Wishing to have an estimate defining the
domain of validity of our approximation, the shortest
way is to resort to a classical model (we note that we do
not know ψ0 defining Ed). To build out a classical
model, we need only to formulate some classical proce-
dure for the calculation of the fields Ee and Ed instead
of (17) and (22). It is done in the next section.

3. A CLASSICAL MODEL
The model is based on the following assumptions.
(1) The ion (the atomic core) is a fixed pointlike

object placed in the center of coordinates and possess-
ing constant charge Z and dipole moment Dc deter-
mined by the equations

, (25)

(26)

where ωj and fj are, respectively, a resonant frequency
and the related oscillator strength; Ee is the field created
by the electron; and EW , as before, is the light wave
field. The system of (25) and (26) yields the same
dipole moment, (18), as the system of (4), (15), and (16).
The condition |aj |2 � 1, implicit in (15), is equivalent to
the condition

, (27)

Ed  � ψ0
3 r d⋅( )r r

2d–

r
5
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which needs to be checked by calculations.
(2) The charge of the outer electron is distributed in

space, and this distribution adiabatically changes with
the motion of the electron center of mass. Accordingly,
the field Ee created by the electron in the center of coor-
dinates is a function of the vector radius re of the elec-
tron center of mass only. Under such assumptions, one
can easily prove that the vector radius re changes in
accordance with (21), where now

(28)

and the dependence of Ee on re needs to be directly or
indirectly postulated. It can be introduced as the mean
value Ee(t) (17), assuming that |ψ0 |2 = ρ(re , r – re) and
that the density ρ is given in such a way to allow ana-
lytical integration in (17). It is done taking ρ as

, (29)

where R = r – re. Then

. (30)

We note that r0 is the parameter determining in the
present model the influence of the ion dipole moment
on the electron trajectory. As it is an unknown parame-
ter, in essence, we are still faced with the problem dis-
cussed at the end of the previous section. However,
through (28) and (30) we have now a direct way of test-
ing the influence of the dipole moment. The parameter r0
has the meaning of a radius, and it may be considered
representative of the electron wave packet spatial extent.
Further, we set r0 = const, the core charge zc = 1, and the
light linearly polarized, EW = Easinωt. This last choice
makes equation (21) one-dimensional.

To avoid difficulties inevitably bound to widely
variated parameters, we assume that the field was
somehow switched on long ago, Ea = const, and that the
electron motion is established. To calculate the har-
monics, we use the spatial representation

, (31)

. (32)

These equations, together with (21), (23), (28), and
(30) and the equations

, (33)

(34)

form a closed system. Any solution of this system con-
tains odd harmonics. Below only cases are considered

Ed
1
e
--- d —⋅( )Ee–=

ρ re R,( )
3r0

2

4π r0
2 R

2
+( )

5/2
---------------------------------=

Ee

ere

r0
2

re
2

+( )
3/2

-------------------------=

re re kω( ) kωtsin
k

∑=

Dc Dc kω( ) kωtsin
k

∑=

EW kω( ) δk1Ea=

Ee d, k ω,( ) 1
π
--- Ee d, kωt( )sin ωt( ),d

0

2π

∫=

when the solution is made single-valued. As a matter of
fact, parasitic effects may arise in the classical calcula-
tion. When the frequency ω is smaller than

,

the amplitude of the settled electron oscillations
becomes a many-valued function of the amplitude Ea and
exhibits a kind of hysteresis loop between Ea = –Ecr(ω)
and Ea = Ecr(ω), where Ecr is some critical, frequency-
dependent value of the field amplitude. If Ea is slowly
growing, when the critical value Ecr is reached, the tra-
jectory re(t) goes to infinity, the direction being deter-
mined by Ea and changing by small variations of the
latter. In the calculations reported below, the condition
Ea > Ecr is always fulfilled.

4. CALCULATIONS AND COMMENTS

Preliminarly, we have checked the importance of the
parameter r0 in the determination of the spectral ampli-
tude of the dipole moment of the outer electron. In par-
ticular, we carried out some calculations assuming a
single resonance, varying the radius r0 and taking the
oscillator strength f = 0 and 0.5. Besides, we varied the
light amplitude and frequency and the ion resonant fre-
quency ω0 = k0ω + δ, where k0 is some odd harmonic
number and –ω < δ < ω.

The results showed that for any reasonable set of the
above parameters, the amplitude of the resonant har-
monic re(k0ω) remains almost unaffected by the ion
dipole moment. It means that (24) holds for the reso-
nant harmonic as well, with the amplitude re(k0ω) eval-
uated within the single-electron model.

Though this result is obtained by numerical calcula-
tions, it can be easily explained analytically. As a mat-
ter of fact, in the spectrum of Dc(kω), as a rule, only the
resonant harmonic Dc(k0ω) is not small (i.e., only
Dc(k0ω) can perturb the electron trajectory). In such a
case, the amplitude Ed(k0ω) turns out to be inevitably
small and does not perturb the amplitude re(kω). [We note
that, if use is made of the quantum-mechanical equa-
tion (21), it is not easy to find out this effect, which,
instead, is obvious from (26), keeping in mind that, in the
spectrum of the field Ee, the amplitude of the fundamen-
tal frequency strongly exceeds any other one].

As for the other amplitudes re(kω), the modifica-
tions are always small if r0 > 3rB with rB the Bohr
radius. For r0 < (2–2.5)rB, the following features are
observed:

(1) if k � k0, the perturbations of the amplitudes
re(kω) are small (see the initial parts of the spectra
reported in Fig. 1);

(2) if ω0 < k0ω (the ion resonance is approached
from above), the spectrum modifications are significant
only when k > k0, where, however, the amplitudes

ωcr
e

2

mr0
3

---------
⎝ ⎠
⎜ ⎟
⎛ ⎞ 1/2

=
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re(kω) become significantly small (see the final part of
the spectra of Fig. 1b);

(3) if ω0 > k0ω (the resonance is approached from
below), strong modifications turn out to be possible in
the region of k > k0 (Fig. 1a). The reason is that in such
a case, the amplitudes Ee(kω) and Ed(kω) are close to
each other as to the order of magnitude, but differ by
sign, and may compensate for each other. Accordingly,
small variations of some parameters can provide large
changes in the spectrum –re(kω) and in the total spec-
trum where k > k0 (final parts of the spectra of Fig. 1a).
The number of harmonics –re(kω) strongly modified by

the resonance ω0 ≅ k0ω decreases with the increase of
the number k0. Increasing k0 in the region k > k0
increases simultaneously the ratio

. (35)

Of course, the most striking changes in the total
spectrum –re(kω) + Dc(kω) occur at the resonance value
k ≈ k0, whatever the sign of the difference ω0 – k0ω (see
Fig. 1). As a rule, at the frequency (k0 – 2)ω one
observes a sudden decrease of about four orders of
magnitude with respect to the single outer electron
spectrum. Here the amplitudes –ere(kω) and Dc(kω)
differ by sign and may compensate each other. Note also
that, for a given value of r0, the variation of the field
amplitude does not change the ratio (35), though it can
cause dramatic changes in the total spectrum. In going
from k0 – 2 to k0, the spectrum undergoes a jump of
about six or seven orders of magnitude, featuring an
isolated peak.

Figure 2 reports the results of the generalization of
the above calculations, when several resonant frequen-
cies ωj come simultaneously into play. The structure of
the spectrum becomes rather complicated. Specific val-
ues of the resonant frequencies and of the oscillator
strengths may yield a spectrum containing a plateau
and cut-off. In the calculations of (Fig. 2), the three res-
onances are approached from below.

5. CONCLUDING REMARKS

We have worked out a theoretical model of high-
order harmonic generation by the outer electron of an
atomic system, taking into account the possibility that
resonant transitions occurring in the atomic core mod-
ify the emitted spectrum. The reported calculations
show that significant modifications may indeed take

Dc kω( )
ere kω( )
----------------------
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Fig. 1. Relative harmonic intensity vs. the harmonic number: (continuous curve) calculation of the dipole moment of the outer elec-
tron with oscillator strength f0 = 0, (dashed curve with crosses) the same as the continuous one with f0 = 0.3, (continuous curve with
squares) calculation of the dipole moment of the whole system “ion plus outer electron” with f0 = 0.3. Other parameters are r0 = 2rB

with rB the Bohr radius, ω = 0.4ωe with ωe = [e2/(m )]1/2, E = 1.9e/ , the resonant frequency is (a) ω0 = 15.05ω and (b) ω0 = 14.95ω.

The curves are meant to help visualization of the discrete points.
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Fig. 2. Relative harmonic intensity vs. the harmonic number
(continuous curve) calculation of the dipole moment of the
outer electron with oscillator strengths fj = 0 (j = 0, 1, 2);
(dashed curve with crosses) the same as the continuous one
with f0 = 0.3, f1 = 0.5, f2 = 0.5; (continuous curve with
squares) calculation of the dipole moment of the whole sys-
tem “ion plus outer electron” with f0 = 0.3, f1 = 0.5, f2 = 0.5.
Other parameters are the same as in Fig. 1. Resonant fre-
quencies are ω0 = 15.05ω, ω1 = 19.10ω, ω2 = 23.10ω.
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place, the most peculiar signature being the appearance
in the harmonic spectrum of anomalous peaks.

We note that, independently of their specific physical
origin, similar anomalous peaks in spectra generated in
plasma have been observed also experimentally [3, 4]
and that inner-shell excitation mechanisms have also
been invoked to account for some harmonic spectra [1].

(We would like to note that the frequency of the
7th harmonic of the KrF laser [4] is rather close to
the frequency of the transition 3p–4s in K2+ and 2s–3p
in C2+ [4].)

Two approximations, among others, made above are
likely to restrict the domain of validity of our treatment.
Mathematically, they are expressed by (11) and (20).
The physical content of (11) is that the core must have
very small spatial dimensions and/or the outer electron
wave packet dimensions must be much larger than the
core ones. Besides, the outer electron wave packet must
spend most of its time far away from the core. We note
that our model is expected to work well if the core is
represented by a bare nucleus in which the internal
degrees of freedom are accounted for. Naturally, as
dipole moments of intranuclear transitions are small,
they will hardly significantly affect high-order har-
monic generation. Rather, in such a case the model can
be used to estimate the probabilities of intranuclear tran-
sitions induced by fields under high-order harmonic gen-
eration or under multiphoton ionization. If, instead, the
core contains electrons, then the applicability of our
model depends essentially on the core dimensions, and
on the smallness of such dimensions in comparison
with other problem characteristic dimensions. The con-
ditions of validity are improved if, during the interac-
tion, the outer electron wave packet increases consider-
ably. Such increase has been shown by means of a com-
puter simulation to occur if the electron oscillates with
a large amplitude [18].

We note, finally, that among the outcomes of our
treatment there is the possibility of population inversion
between some levels of the atomic core. The physical
contents of (20) is that the Stark shift of any core level �k
significantly contributing to the ion dipole moment
must be small as compared to � |ωk0 – Ω|. Let us esti-
mate the left-hand side of the inequality (20) for the
level ((1s)1(2p)1) of the Li+ ion assuming that Ee(ω) +
EW(ω) � Ee(ω), and that the field Ee(t) coincides with
(30) where re � rasin(ωt). Taking r0 = 2.5rB (approxi-
mately e2/(2I), with I the lithium atom ionization poten-
tial), ra = 2r0, and �ω = 2.5–4.5 eV, the value of the left-
hand side of (20) is between 0.3 and 0.5 eV. It decreases
increasing r0 and ra, and increases if the frequency ω
approaches a strong resonance (up to 1.3–6 eV).
Clearly, in the case of large atomic cores with several
electrons one has many resonances and large oscillator
strengths, so that the inequality (20) may well be vio-
lated. Altogether, our treatment is expected to work sat-
isfactorily for relatively simple and compact atomic
systems.

In conclusion we would like to point out the impor-
tance of addressing many-electron effects in the har-
monic spectra, in particular electron core resonant tran-
sitions. Such effects are likely to be important and of
growing interest for small and large atomic core as well.

ACKNOWLEDGMENTS

This research has been carried out in the framework
of the General Agreement on Scientific Cooperation
between Lomonosov Moscow State University (Rus-
sia) and the University of Palermo (Italy). Additional
indirect support has been provided by the Russian
Foundation for Basic Research, the University of Pal-
ermo Computation Center, The Italian Ministry of Uni-
versity and Scientific Researches, The National Group
of Structure of Matter of the Italian National Research
Council, and the Sicilian Regional Committee for
Nuclear and Structure of the Matter Researches.

REFERENCES
1. McPherson, A., Gibson, G., Jara, H., et al., 1987, J. Opt.

Soc. Am. B, 4, 595.
2. Ferray, M., L’Huillier, A., Li, X.F., et al., 1988, J. Phys. B,

21, L31.
3. Sarukura, N., Hata, K., Adachi, T., et al., 1991, Phys.

Rev. A, 43, 1669.
4. Kubodera, S., Nagata, Y., Akiyama, Y., et al., 1993, Phys.

Rev. A, 48, 4576.
5. Akiyama, Y., Midorikawa, K., Matsunawa, Y., et al.,

1992, Phys. Rev. Lett., 69, 2176.
6. Balcou, Ph., Cornaggia, C., Gomes, A.S.L., et al., 1992,

J. Phys. B: Atom. Mol. Opt. Phys., 25, 4467.
7. Lewenstein, M., Balcou, Ph., Ivanov, M.Yu., et al., 1994,

Phys. Rev. A, 49, 2117.
8. Preston, S.G., Sampera, A., Zepf, M., et al., 1996, Phys.

Rev. A, 53, R31.
9. Zhou, J., Peatross, J., Murname, M.M., and Capteyn, H.C.,

1996, Phys. Rev. Lett., 76, 752.
10. Lompré, L.A., L’Huillier, A., and Mainfray, G., 1991,

Proceedings on Short-Wavelength Coherent Radiation,
Bucksbaum, P.H. and Caglio, N.M., Eds. (Washington, DC:
Opt. Soc. Am.), vol. 2, p. 2.

11. L’Huillier, A., Balcou, Ph., and Lompé, L.A., 1992,
Phys. Rev. Lett., 68, 166.

12. L’Huillier, A. and Balcou, Ph., 1993, Phys. Rev. Lett., 70,
774.

13. Ferrante, G., Oleinikov, P.A., and Platonenko, V.T.,
1994, Pis’ma Zh. Eksp. Teor. Fiz., 60, 235 [1994, JETP
Lett., 60, 246].

14. Birulin, A.V., Platonenko, V.T., and Strelkov, V.V., 1996,
Zh. Eksp. Teor. Fiz., 110, 63.

15. Perry, M.D., Szoke, A and Kulander, K.C., 1989, Phys.
Rev. Lett., 63, 1058.

16. Xu, H., Tang, X., and Lambropoulos, P., 1992, Phys.
Rev. A, 46, R2225.

17. Krause, J.L., Schafer, K.J., and Kulander, K.C., 1992,
Phys. Rev. Lett., 68, 3535.

18. De Vries, P.L., 1990, J. Opt. Soc. Am. B, 7, 517. 


