2,003 research outputs found

    AF-algebras and topology of mapping tori

    Get PDF
    A covariant functor from the category of mapping tori to a category of AF-algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding AF-algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension 2, 3 and 4.Comment: to appear Czechoslovak Math.

    A Linear Structural Equation Model for Covert Verb Generation Based on Independent Component Analysis of fMRI Data from Children and Adolescents

    Get PDF
    Human language is a complex and protean cognitive ability. Young children, following well defined developmental patterns learn language rapidly and effortlessly producing full sentences by the age of 3 years. However, the language circuitry continues to undergo significant neuroplastic changes extending well into teenage years. Evidence suggests that the developing brain adheres to two rudimentary principles of functional organization: functional integration and functional specialization. At a neurobiological level, this distinction can be identified with progressive specialization or focalization reflecting consolidation and synaptic reinforcement of a network (Lenneberg, 1967; Muller et al., 1998; Berl et al., 2006). In this paper, we used group independent component analysis and linear structural equation modeling (McIntosh and Gonzalez-Lima, 1994; Karunanayaka et al., 2007) to tease out the developmental trajectories of the language circuitry based on fMRI data from 336 children ages 5–18 years performing a blocked, covert verb generation task. The results are analyzed and presented in the framework of theoretical models for neurocognitive brain development. This study highlights the advantages of combining both modular and connectionist approaches to cognitive functions; from a methodological perspective, it demonstrates the feasibility of combining data-driven and hypothesis driven techniques to investigate the developmental shifts in the semantic network

    The Embedded Super Star Cluster of SBS0335-052

    Full text link
    We analyze the infrared (6-100 micron) spectral energy distribution of the blue compact dwarf and metal-poor (Z=Z_solar/41) galaxy SBS0335-052. With the help of DUSTY (Ivezic et al. 1999), a program that solves the radiation transfer equations in a spherical environment, we evaluate that the infrared (IR) emission of SBS0335-052 is produced by an embedded super-star cluster (SSC) hidden under 10^5 M_solar of dust, causing 30 mag of visual extinction. This implies that one cannot detect any stellar emission from the 2x10^6 M_solar stellar cluster even at near-infrared (NIR) wavelengths. The derived grain size distribution departs markedly from the widely accepted size distribution inferred for dust in our galaxy (the so-called MRN distribution, Mathis et al. 1977), but resembles what is seen around AGNs, namely an absence of PAH and smaller grains, and grains that grow to larger sizes (around 1 micron). The fact that a significant amount of dust is present in such a low-metallicity galaxy, hiding from UV and optical view most of the star formation activity in the galaxy, and that the dust size distribution cannot be reproduced by a standard galactic law, should be borne in mind when interpreting the spectrum of primeval galaxies.Comment: 32 pages, 3 figures,accepted for publication in A

    Computational Model Prediction and Biological Validation Using Simplified Mixed Field Exposures for the Development of a GCR Reference Field

    Get PDF
    The yield of chromosomal aberrations has been shown to increase in the lymphocytes of astronauts after long-duration missions of several months in space. Chromosome exchanges, especially translocations, are positively correlated with many cancers and are therefore a potential biomarker of cancer risk associated with radiation exposure. Although extensive studies have been carried out on the induction of chromosomal aberrations by low- and high-LET radiation in human lymphocytes, fibroblasts, and epithelial cells exposed in vitro, there is a lack of data on chromosome aberrations induced by low dose-rate chronic exposure and mixed field beams such as those expected in space. Chromosome aberration studies at NSRL will provide the biological validation needed to extend the computational models over a broader range of experimental conditions (more complicated mixed fields leading up to the galactic cosmic rays (GCR) simulator), helping to reduce uncertainties in radiation quality effects and dose-rate dependence in cancer risk models. These models can then be used to answer some of the open questions regarding requirements for a full GCR reference field, including particle type and number, energy, dose rate, and delivery order. In this study, we designed a simplified mixed field beam with a combination of proton, helium, oxygen, and iron ions with shielding or proton, helium, oxygen, and titanium without shielding. Human fibroblasts cells were irradiated with these mixed field beam as well as each single beam with acute and chronic dose rate, and chromosome aberrations (CA) were measured with 3-color fluorescent in situ hybridization (FISH) chromosome painting methods. Frequency and type of CA induced with acute dose rate and chronic dose rates with single and mixed field beam will be discussed. A computational chromosome and radiation-induced DNA damage model, BDSTRACKS (Biological Damage by Stochastic Tracks), was updated to simulate various types of CA induced by acute exposures of the mixed field beams used for the experiments. The chromosomes were simulated by a polymer random walk algorithm with restrictions to their respective domains in the nucleus [1]. The stochastic dose to the nucleus was calculated with the code RITRACKS [2]. Irradiation of a target volume by a mixed field of ions was implemented within RITRACKs, and the fields of ions can be delivered over specific periods of time, allowing the simulation of dose-rate effects. Similarly, particles of various types and energies extracted from a pre-calculated spectra of galactic cosmic rays (GCR) can be used in RITRACKS. The number and spatial location of DSBs (DNA double-strand breaks) were calculated in BDSTRACKS using the simulated chromosomes and local (voxel) dose. Assuming that DSBs led to chromosome breaks, and simulating the rejoining of damaged chromosomes occurring during repair, BDSTRACKS produces the yield of various types of chromosome aberrations as a function of time (only final yields are presented). A comparison between experimental and simulation results will be shown

    Contact complete integrability

    Full text link
    Complete integrability in a symplectic setting means the existence of a Lagrangian foliation leaf-wise preserved by the dynamics. In the paper we describe complete integrability in a contact set-up as a more subtle structure: a flag of two foliations, Legendrian and co-Legendrian, and a holonomy-invariant transverse measure of the former in the latter. This turns out to be equivalent to the existence of a canonical RRn1\R\ltimes \R^{n-1} structure on the leaves of the co-Legendrian foliation. Further, the above structure implies the existence of nn contact fields preserving a special contact 1-form, thus providing the geometric framework and establishing equivalence with previously known definitions of contact integrability. We also show that contact completely integrable systems are solvable in quadratures. We present an example of contact complete integrability: the billiard system inside an ellipsoid in pseudo-Euclidean space, restricted to the space of oriented null geodesics. We describe a surprising acceleration mechanism for closed light-like billiard trajectories

    Performance of a cryogenic system prototype for the XENON1T Detector

    Full text link
    We have developed an efficient cryogenic system with heat exchange and associated gas purification system, as a prototype for the XENON1T experiment. The XENON1T detector will use about 3 ton of liquid xenon (LXe) at a temperature of 175K as target and detection medium for a dark matter search. In this paper we report results on the cryogenic system performance focusing on the dynamics of the gas circulation-purification through a heated getter, at flow rates above 50 Standard Liter per Minute (SLPM). A maximum flow of 114 SLPM has been achieved, and using two heat exchangers in parallel, a heat exchange efficiency better than 96% has been measured

    3D Position Sensitive XeTPC for Dark Matter Search

    Get PDF
    The technique to realize 3D position sensitivity in a two-phase xenon time projection chamber (XeTPC) for dark matter search is described. Results from a prototype detector (XENON3) are presented.Comment: Presented at the 7th UCLA Symposium on "Sources and Detection of Dark Matter and Dark Energy in the Universe

    First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory

    Full text link
    The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber (XeTPC) to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon, to discriminate signal from background down to 4.5 keV nuclear recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006 and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross-section of 8.8 x 10^{-44} cm^2 for a WIMP mass of 100 GeV/c^2, and 4.5 x 10^{-44} cm^2 for a WIMP mass of 30 GeV/c^2. This result further constrains predictions of supersymmetric models.Comment: accepted for publication in Phys. Rev. Let
    corecore