10 research outputs found
Expression and secretion of Otx2 by choroid plexus, new evidence for non-cell autonomous regulation of adult neurogenesis
La neurogenèse adulte permet la formation de nouveaux neurones dans les bulbes olfactifs de la souris. Les propriétés des cellules souches neurales situées dans la zone sous-ventriculaire (ZSV) et des précurseurs sont régulées par la niche contenant des cellules de support et une matrice extracellulaire (MEC). Des facteurs contenus dans le liquide cérébrospinal (LCS), produits par les plexus choroïdes (PC), contrôlent aussi la niche. L'homéoprotéine Otx2 est secrétée dans le LCS par les PC, et internalisée spécifiquement par certaines cellules du parenchyme cérébral. Otx2 est impliquée dans différentes étapes du développement du cerveau, dont celui des PC, et peut agir de manière non-cellulaire-autonome. Ma thèse vise à comprendre comment Otx2 régule les fonctions des PC et participe à la neurogenèse adulte. Grâce à des études génomiques d'un modèle murin knockdown (KD) d'Otx2 dans les PC adultes, nous avons montré que (i) les PC de différents ventricules présentent des profils d'expression différents (ii) le KD d'Otx2 modifie l'expression de gènes impliqués dans des fonctions importantes des PC (iii) la dérégulation de certains gènes après KD est spécifique d'un type de PC. Une étude protéomique suggère (iv) qu'Otx2 pourrait être impliquée à d'autres niveaux que la régulation transcriptionnelle. L'étude de la neurogenèse adulte dans des modèles murins KD d'Otx2 nous a permis de montrer que (i) l'expression d'Otx2 dans les PC régule la neurogenèse adulte (ii) Otx2 transfère dans les astrocytes de la ZSV (iii) le transfert d'Otx2 est suffisant pour réguler la neurogenèse (iv) le KD d'Otx2 dans les PC modifie l'expression de protéines de la MEC secrétées par les astrocytes.Adult neurogenesis in mice involves neural stem cells in the subventricular zone (SVZ) whose progenitors integrate into the olfactory bulbs. The neurogenic niche, which contains supporting cells and extracellular matrix (ECM), regulates the properties (proliferation, migration and differentiation) of progenitor cells. This niche is influenced by factors from cerebrospinal fluid (CSF), which is produced by the choroid plexus (CP) in the brain ventricles. The Otx2 homeoprotein transcription factor is secreted into CSF by CP, and taken up by a specific subset of cells within the brain parenchyma. Otx2 is involved in various stages of brain development, including CP development, and has non-cell autonomous functions. The aim of my thesis is to understand how Otx2 regulates adult CP function and participates in adult SVZ neurogenesis. Through genomic studies, we investigated the consequence of Otx2 knockdown (KD) in adult CP and found: (i) adult CP from different ventricles exhibit different expression profiles; (ii) Otx2 KD alters the expression of genes with important CP functions; and (iii) deregulation of certain genes after Otx2 KD can be CP specific. Through proteomics studies, we found that (iv) adult Otx2 could be involved in functions beyond transcriptional regulation, such as RNA processing.To evaluate the role of Otx2 in SVZ neurogenesis, we also used Otx2 KD mouse models. We found that: (i) the expression of Otx2 in CP regulates adult neurogenesis; (ii) Otx2 transfers to astrocytes of the SVZ; (iii) Otx2 transfer is sufficient to regulate adult neurogenesis; and (iv) Otx2 KD in CP alters the expression of ECM proteins secreted by astrocytes in the neurogenic niche
Expression et sécrétion d'Otx2 par les plexus choroïdes, nouvelle évidence d'un contrôle non-cellulaire- autonome de la neurogenèse adulte. Rôles physiologiques d’Otx2
Adult neurogenesis in mice involves neural stem cells in the subventricular zone (SVZ) whose progenitors integrate into the olfactory bulbs. The neurogenic niche, which contains supporting cells and extracellular matrix (ECM), regulates the properties (proliferation, migration and differentiation) of progenitor cells. This niche is influenced by factors from cerebrospinal fluid (CSF), which is produced by the choroid plexus (CP) in the brain ventricles. The Otx2 homeoprotein transcription factor is secreted into CSF by CP, and taken up by a specific subset of cells within the brain parenchyma. Otx2 is involved in various stages of brain development, including CP development, and has non-cell autonomous functions. The aim of my thesis is to understand how Otx2 regulates adult CP function and participates in adult SVZ neurogenesis. Through genomic studies, we investigated the consequence of Otx2 knockdown (KD) in adult CP and found: (i) adult CP from different ventricles exhibit different expression profiles; (ii) Otx2 KD alters the expression of genes with important CP functions; and (iii) deregulation of certain genes after Otx2 KD can be CP specific. Through proteomics studies, we found that (iv) adult Otx2 could be involved in functions beyond transcriptional regulation, such as RNA processing.To evaluate the role of Otx2 in SVZ neurogenesis, we also used Otx2 KD mouse models. We found that: (i) the expression of Otx2 in CP regulates adult neurogenesis; (ii) Otx2 transfers to astrocytes of the SVZ; (iii) Otx2 transfer is sufficient to regulate adult neurogenesis; and (iv) Otx2 KD in CP alters the expression of ECM proteins secreted by astrocytes in the neurogenic niche.La neurogenèse adulte permet la formation de nouveaux neurones dans les bulbes olfactifs de la souris. Les propriétés des cellules souches neurales situées dans la zone sous-ventriculaire (ZSV) et des précurseurs sont régulées par la niche contenant des cellules de support et une matrice extracellulaire (MEC). Des facteurs contenus dans le liquide cérébrospinal (LCS), produits par les plexus choroïdes (PC), contrôlent aussi la niche. L'homéoprotéine Otx2 est secrétée dans le LCS par les PC, et internalisée spécifiquement par certaines cellules du parenchyme cérébral. Otx2 est impliquée dans différentes étapes du développement du cerveau, dont celui des PC, et peut agir de manière non-cellulaire-autonome. Ma thèse vise à comprendre comment Otx2 régule les fonctions des PC et participe à la neurogenèse adulte. Grâce à des études génomiques d'un modèle murin knockdown (KD) d'Otx2 dans les PC adultes, nous avons montré que (i) les PC de différents ventricules présentent des profils d'expression différents (ii) le KD d'Otx2 modifie l'expression de gènes impliqués dans des fonctions importantes des PC (iii) la dérégulation de certains gènes après KD est spécifique d'un type de PC. Une étude protéomique suggère (iv) qu'Otx2 pourrait être impliquée à d'autres niveaux que la régulation transcriptionnelle. L'étude de la neurogenèse adulte dans des modèles murins KD d'Otx2 nous a permis de montrer que (i) l'expression d'Otx2 dans les PC régule la neurogenèse adulte (ii) Otx2 transfère dans les astrocytes de la ZSV (iii) le transfert d'Otx2 est suffisant pour réguler la neurogenèse (iv) le KD d'Otx2 dans les PC modifie l'expression de protéines de la MEC secrétées par les astrocytes
OTX2 Homeoprotein Functions in Adult Choroid Plexus
The choroid plexus is an important blood barrier that secretes cerebrospinal fluid, which essential for embryonic brain development and adult brain homeostasis. The OTX2 homeoprotein is a transcription factor that is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative functional roles for OTX2 in adult choroid plexus function, including cell signaling and adhesion, and show that OTX2 regulates the expression of factors that are secreted into the cerebrospinal fluid, notably transthyretin. We also show that Otx2 expression impacts choroid plexus immune and stress responses, and affects splicing, leading to changes in the mRNA isoforms of proteins that are implicated in the oxidative stress response and DNA repair. Through mass spectrometry analysis of OTX2 protein partners in the choroid plexus, and in known non-cell-autonomous target regions, such as the visual cortex and subventricular zone, we identify putative targets that are involved in cell adhesion, chromatin structure, and RNA processing. Thus, OTX2 retains important roles for regulating choroid plexus function and brain homeostasis throughout life
Morphological, cellular and molecular characterization of posterior regeneration in the marine annelid Platynereis dumerilii
International audienceRegeneration, the ability to restore body parts after an injury or an amputation, is a widespread but highly variable and complex phenomenon in animals. While having fascinated scientists for centuries, fundamental questions about the cellular basis of animal regeneration as well as its evolutionary history remain largely unanswered. Here, we present a study of regeneration of the marine annelid Platynereis dumerilii, an emerging comparative developmental biology model, which, like many other annelids, displays important regenerative abilities. When P. dumerilii worms are amputated, they are able to regenerate the posteriormost differentiated part of their body and a stem cell-rich growth zone that allows the production of new segments replacing the amputated ones. We show that posterior regeneration is a rapid process that follows a well reproducible path and timeline, going through specific stages that we thoroughly defined. Wound healing is achieved one day after amputation and a regeneration blastema forms one day later. At this time point, some tissue specification already occurs, and a functional posterior growth zone is re-established as early as three days after amputation. Regeneration timing is only influenced, in a minor manner, by worm size. Comparable regenerative abilities are found for amputations performed at different positions along the antero-posterior axis of the worm, except when amputation planes are very close to the pharynx. Regenerative abilities persist upon repeated amputations without important alterations of the process. We also show that intense cell proliferation occurs during regeneration and that cell divisions are required for regeneration to proceed normally. Finally, 5-ethynyl-2'-deoxyuridine (EdU) pulse and chase experiments suggest that blastemal cells mostly derive from the segment immediately abutting the amputation plane. The detailed characterization of P. dumerilii posterior body regeneration presented in this article provides the foundation for future mechanistic and comparative studies of regeneration in this species
Development OTX2 Signals from the Choroid Plexus to Regulate Adult Neurogenesis
International audienceProliferation and migration during adult neurogenesis are regulated by a microenvironment of signaling molecules originating from local vasculature, from CSF produced by the choroid plexus, and from local supporting cells including astrocytes. Here, we focus on the function of OTX2 homeoprotein transcription factor in the mouse adult ventricular-subventricular zone (V-SVZ), which generates olfactory bulb neurons. We find that OTX2 secreted by choroid plexus is transferred to the supporting cells of the V-SVZ and rostral migratory stream. Deletion of Otx2 in choroid plexus affects neuroblast migration and reduces the number of olfactory bulb newborn neurons. Adult neurogenesis was also decreased by expressing secreted single-chain antibodies to sequester OTX2 in the CSF, demonstrating the importance of non-cell-autonomous OTX2. We show that OTX2 activity modifies extracellular matrix components and signaling molecules produced by supporting astrocytes. Thus, we reveal a multilevel and non-cell-autonomous role of a homeoprotein and reinforce the choroid plexus and astrocytes as key niche compartments affecting adult neurogenesis
DNA methylation during development and regeneration of the annelid Platynereis dumerilii
International audienceBackground: Methylation of cytosines in DNA (5mC methylation) is a major epigenetic modification that modulates gene expression and constitutes the basis for mechanisms regulating multiple aspects of embryonic development and cell reprogramming in vertebrates. In mammals, 5mC methylation of promoter regions is linked to transcriptional repression. Transcription regulation by 5mC methylation notably involves the nucleosome remodeling and deacetylase complex (NuRD complex) which bridges DNA methylation and histone modifications. However, less is known about regulatory mechanisms involving 5mC methylation and their function in non-vertebrate animals. In this paper, we study 5mC methylation in the marine annelid worm Platynereis dumerilii, an emerging evolutionary and developmental biology model capable of regenerating the posterior part of its body post-amputation.Results: Using in silico and experimental approaches, we show that P. dumerilii displays a high level of DNA methylation comparable to that of mammalian somatic cells. 5mC methylation in P. dumerilii is dynamic along the life cycle of the animal and markedly decreases at the transition between larval to post-larval stages. We identify a full repertoire of mainly single-copy genes encoding the machinery associated with 5mC methylation or members of the NuRD complex in P. dumerilii and show that this repertoire is close to the one inferred for the last common ancestor of bilaterians. These genes are dynamically expressed during P. dumerilii development and regeneration. Treatment with the DNA hypomethylating agent Decitabine impairs P. dumerilii larval development and regeneration and has long-term effects on post-regenerative growth.Conclusions: Our data reveal high levels of 5mC methylation in the annelid P. dumerilii, highlighting that this feature is not specific to vertebrates in the bilaterian clade. Analysis of DNA methylation levels and machinery gene expression during development and regeneration, as well as the use of a chemical inhibitor of DNA methylation, suggest an involvement of 5mC methylation in P. dumerilii development and regeneration. We also present data indicating that P. dumerilii constitutes a promising model to study biological roles and mechanisms of DNA methylation in non-vertebrate bilaterians and to provide new knowledge about evolution of the functions of this key epigenetic modification in bilaterian animals
Beneficial effects of striatal restoration of CYP46A1 expression using AAVrh10 serotype in Huntington's disease mice model (R6/2)
Collaborative Congress of the European-Society-of-Gene-and-Cell-Therapy/French-Society-of-Cell-and-Gen e-Therapy, Versailles, FRANCE, OCT 25-29, 2012International audienceno abstrac
OTX2 Homeoprotein Functions in Adult Choroid Plexus
International audienceThe choroid plexus is an important blood barrier that secretes cerebrospinal fluid, which essential for embryonic brain development and adult brain homeostasis. The OTX2 homeoprotein is a transcription factor that is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative functional roles for OTX2 in adult choroid plexus function, including cell signaling and adhesion, and show that OTX2 regulates the expression of factors that are secreted into the cerebrospinal fluid, notably transthyretin. We also show that Otx2 expression impacts choroid plexus immune and stress responses, and affects splicing, leading to changes in the mRNA isoforms of proteins that are implicated in the oxidative stress response and DNA repair. Through mass spectrometry analysis of OTX2 protein partners in the choroid plexus, and in known non-cell-autonomous target regions, such as the visual cortex and subventricular zone, we identify putative targets that are involved in cell adhesion, chromatin structure, and RNA processing. Thus, OTX2 retains important roles for regulating choroid plexus function and brain homeostasis throughout life
CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease
International audienceHuntington’s disease is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (Exp-HTT) leading to degeneration of striatal neurons. Altered brain cholesterol homeostasis has been implicated in Huntington’s disease, with increased accumulation of cholesterol in striatal neurons yet reduced levels of cholesterol metabolic precursors. To elucidate these two seemingly opposing dysregulations, we investigated the expression of cholesterol 24-hydroxylase (CYP46A1), the neuronal-specific and rate-limiting enzyme for cholesterol conversion to 24S-hydroxycholesterol (24S-OHC). CYP46A1 protein levels were decreased in the putamen, but not cerebral cortex samples, of post-mortem Huntington’s disease patients when compared to controls. Cyp46A1 mRNA and CYP46A1 protein levels were also decreased in the striatum of the R6/2 Huntington’s disease mouse model and in SThdhQ111 cell lines. In vivo, in a wild-type context, knocking down CYP46A1 expression in the striatum, via an adeno-associated virus-mediated delivery of selective shCYP46A1, reproduced the Huntington’s disease phenotype, with spontaneous striatal neuron degeneration and motor deficits, as assessed by rotarod. In vitro, CYP46A1 restoration protected SThdhQ111 and Exp-HTT-expressing striatal neurons in culture from cell death. In the R6/2 Huntington’s disease mouse model, adeno-associated virus-mediated delivery of CYP46A1 into the striatum decreased neuronal atrophy, decreased the number, intensity level and size of Exp-HTT aggregates and improved motor deficits, as assessed by rotarod and clasping behavioural tests. Adeno-associated virus-CYP46A1 infection in R6/2 mice also restored levels of cholesterol and lanosterol and increased levels of desmosterol. In vitro, lanosterol and desmosterol were found to protect striatal neurons expressing Exp-HTT from death. We conclude that restoring CYP46A1 activity in the striatum promises a new therapeutic approach in Huntington’s disease