52 research outputs found

    Sobolev regularity and an enhanced Jensen inequality

    Get PDF

    Rare enemies and rare friends: adaptations that make other adaptations maladaptive

    Get PDF
    We show that certain adaptations can make other adaptations maladaptive. For example, one line of defence against an enemy can make an otherwise valuable, but subsequent line of defence detrimental. This can occur through indirect rare enemy effects

    The adaptiveness of defence strategies against cuckoo parasitism

    Get PDF
    Most bird species of the Eurasian Cuckoo, 'Cuculuscanorus', often display egg-discrimination behaviour butchick-rejection behaviour has never been reported.In this paper, we analyse ahost-cuckoo association in which both population dynamics andevolutionary dynamics are explored in a discrete-time model.We introduce four host types, each with their own defence behaviour, displayingeither egg or chick rejection, neither or both. We also introducefitness functions for each of these host types.Although we can characterise the long term behaviour in many cases by a simpleheuristic argument which is in accordance with common views in ecology, thereare a number of other phenomena that are not explained within thisframework: we describe stable oscillatory behaviour and coexistence oftwo defensive host types. We analyse the scenariosin which chick rejection may establish itself and give a first explanationas to why this defence trait has never been recorded in nature.We find that chick rejectors generally are at an intrinsicdisadvantage with respect to a host type that rejects eggs.Hosts benefit more from rejecting cuckoo eggs than cuckoo chicks, and ourmodel suggests that this is chiefly responsible for the absence of chickrejection. Moreover, even though it seems that chick rejection must beuseful as an extra defence, it is shown that hosts with both defencestrategies are less likely to establish themselves in competitionwith egg-rejectors than hosts which reject chicks only.These results provide insight in the extent to whichadaptations may be perfected by natural selection

    Why do house-hunting ants recruit in both directions?

    Get PDF
    To perform tasks, organisms often use multiple procedures. Explaining the breadth of such behavioural repertoires is not always straightforward. During house hunting, colonies of Temnothorax albipennis ants use a range of behaviours to organise their emigrations. In particular, the ants use tandem running to recruit naïve ants to potential nest sites. Initially, they use forward tandem runs (FTRs) in which one leader takes a single follower along the route from the old nest to the new one. Later, they use reverse tandem runs (RTRs) in the opposite direction. Tandem runs are used to teach active ants the route between the nests, so that they can be involved quickly in nest evaluation and subsequent recruitment. When a quorum of decision-makers at the new nest is reached, they switch to carrying nestmates. This is three times faster than tandem running. As a rule, having more FTRs early should thus mean faster emigrations, thereby reducing the colony’s vulnerability. So why do ants use RTRs, which are both slow and late? It would seem quicker and simpler for the ants to use more FTRs (and higher quorums) to have enough knowledgeable ants to do all the carrying. In this study, we present the first testable theoretical explanation for the role of RTRs. We set out to find the theoretically fastest emigration strategy for a set of emigration conditions. We conclude that RTRs can have a positive effect on emigration speed if FTRs are limited. In these cases, low quorums together with lots of reverse tandem running give the fastest emigration

    Some studies on the deformation of the membrane in an RF MEMS switch

    Get PDF
    Radio Frequency (RF) switches of Micro Electro Mechanical Systems (MEMS) are appealing to the mobile industry because of their energy efficiency and ability to accommodate more frequency bands. However, the electromechanical coupling of the electrical circuit to the mechanical components in RF MEMS switches is not fully understood. In this paper, we consider the problem of mechanical deformation of electrodes in RF MEMS switch due to the electrostatic forces caused by the difference in voltage between the electrodes. It is known from previous studies of this problem, that the solution exhibits multiple deformation states for a given electrostatic force. Subsequently, the capacity of the switch that depends on the deformation of electrodes displays a hysteresis behaviour against the voltage in the switch. We investigate the present problem along two lines of attack. First, we solve for the deformation states of electrodes using numerical methods such as finite difference and shooting methods. Subsequently, a relationship between capacity and voltage of the RF MEMS switch is constructed. The solutions obtained are exemplified using the continuation and bifurcation package AUTO. Second, we focus on the analytical methods for a simplified version of the problem and on the stability analysis for the solutions of deformation states. The stability analysis shows that there exists a continuous path of equilibrium deformation states between the open and closed state

    Whole-cell metabolic control analysis

    Get PDF
    Since its conception some fifty years ago, metabolic control analysis (MCA) aims to understand how cells control their metabolism by adjusting the activity of their enzymes. Here we extend its scope to a whole-cell context. We consider metabolism in the evolutionary context of growth-rate maximisation by optimisation of protein concentrations. This framework allows for the prediction of flux control coefficients from proteomics data or stoichiometric modelling. Since genes compete for finite biosynthetic resources, we treat all protein concentrations as interdependent. We show that elementary flux modes (EFMs) emerge naturally as the optimal metabolic networks in the whole-cell context and we derive their control properties. In the evolutionary optimum, the number of expressed EFMs is determined by the number of protein-concentration constraints that limit growth rate. We use published glucose-limited chemostat data of S. cerevisiae to illustrate that it uses only two EFMs prior to the onset of fermentation and that it uses four EFMs during fermentation. We discuss published enzyme-titration data to show that S. cerevisiae and E. coli indeed can express proteins at growth-rate maximising concentrations. Accordingly, we extend MCA to elementary flux modes operating at an optimal state. We find that the expression of growth-unassociated proteins changes results from classical metabolic control analysis. Finally, we show how flux control coefficients can be estimated from proteomics and ribosome-profiling data. We analyse published proteomics data of E. coli to provide a whole-cell perspective of the control of metabolic enzymes on growth rate. We hope that this paper stimulates a renewed interest in metabolic control analysis, so that it can serve again the purpose it once had: to identify general principles that emerge from the biochemistry of the cell and are conserved across biological species

    Evolution of defence portfolios in exploiter-victim systems

    Get PDF
    Some organisms maintain a battery of defensive strategies against their exploiters (predators, parasites or parasitoids), while others fail to employ a defence that seems obvious. In this paper, we shall investigate the circumstances under which defence strategies might be expected to evolve. Brood parasites and their hosts provide our main motivation, and we shall discuss why the reed warbler Acrocephalus scirpaceus has evolved an egg-rejection but not a chick-rejection strategy as a defence against the common (Eurasian) cuckoo Cuculus canorus, while the superb fairy-wren Malurus cyaneus has evolved a chick-rejection but not an egg-rejection strategy as a defence against Horsfield's bronze-cuckoo Chrysococcyx basalis. We suggest that the answers lie in strategy-blocking, where one strategy (the blocking strategy) prevents the appearance of another (the blocked strategy) that would be adaptive in its absence. This may be common in exploiter-victim systems. © 2006 Springer Science+Business Media, Inc

    Trail laying during tandem-running recruitment in the ant Temnothorax albipennis

    Get PDF
    Tandem running is a recruitment strategy whereby one ant leads a single naïve nest mate to a resource. While tandem running progresses towards the goal, the leader ant and the follower ant maintain contact mainly by tactile signals. In this paper, we investigated whether they also deposit chemical signals on the ground during tandem running. We filmed tandem-running ants and analysed the position of the gasters of leaders and followers. Our results show that leader ants are more likely to press their gasters down to the substrate compared to follower ants, single ants and transporter ants. Forward tandem-run leaders (those moving towards a new nest site) performed such trail-marking procedures three times more often than reverse tandem leaders (those moving towards an old nest site). That leader ants marked the trails more often during forward tandem runs may suggest that it is more important to maintain the bond with the follower ant on forward tandem runs than on reverse tandem runs. Marked trails on the ground may serve as a safety line that improves both the efficiency of tandem runs and their completion rates. © 2014 Springer-Verlag Berlin Heidelberg

    Recruitment Strategies and Colony Size in Ants

    Get PDF
    Ants use a great variety of recruitment methods to forage for food or find new nests, including tandem running, group recruitment and scent trails. It has been known for some time that there is a loose correlation across many taxa between species-specific mature colony size and recruitment method. Very small colonies tend to use solitary foraging; small to medium sized colonies use tandem running or group recruitment whereas larger colonies use pheromone recruitment trails. Until now, explanations for this correlation have focused on the ants' ecology, such as food resource distribution. However, many species have colonies with a single queen and workforces that grow over several orders of magnitude, and little is known about how a colony's organization, including recruitment methods, may change during its growth. After all, recruitment involves interactions between ants, and hence the size of the colony itself may influence which recruitment method is used—even if the ants' behavioural repertoire remains unchanged. Here we show using mathematical models that the observed correlation can also be explained by recognizing that failure rates in recruitment depend differently on colony size in various recruitment strategies. Our models focus on the build up of recruiter numbers inside colonies and are not based on optimality arguments, such as maximizing food yield. We predict that ant colonies of a certain size should use only one recruitment method (and always the same one) rather than a mix of two or more. These results highlight the importance of the organization of recruitment and how it is affected by colony size. Hence these results should also expand our understanding of ant ecology

    Trail laying during tandem-running recruitment in the ant Temnothorax albipennis

    Get PDF
    Tandem running is a recruitment strategy whereby one ant leads a single naïve nest mate to a resource. While tandem running progresses towards the goal, the leader ant and the follower ant maintain contact mainly by tactile signals. In this paper, we investigated whether they also deposit chemical signals on the ground during tandem running. We filmed tandem-running ants and analysed the position of the gasters of leaders and followers. Our results show that leader ants are more likely to press their gasters down to the substrate compared to follower ants, single ants and transporter ants. Forward tandem-run leaders (those moving towards a new nest site) performed such trail-marking procedures three times more often than reverse tandem leaders (those moving towards an old nest site). That leader ants marked the trails more often during forward tandem runs may suggest that it is more important to maintain the bond with the follower ant on forward tandem runs than on reverse tandem runs. Marked trails on the ground may serve as a safety line that improves both the efficiency of tandem runs and their completion rates. © 2014 Springer-Verlag Berlin Heidelberg
    • …
    corecore