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A B S T R A C T

Since its conception some fifty years ago, metabolic control analysis (MCA) aims to understand how cells
control their metabolism by adjusting the activity of their enzymes. Here we extend its scope to a whole-cell
context. We consider metabolism in the evolutionary context of growth-rate maximisation by optimisation of
protein concentrations. This framework allows for the prediction of flux control coefficients from proteomics
data or stoichiometric modelling. Since genes compete for finite biosynthetic resources, we treat all protein
concentrations as interdependent. We show that elementary flux modes (EFMs) emerge naturally as the optimal
metabolic networks in the whole-cell context and we derive their control properties. In the evolutionary
optimum, the number of expressed EFMs is determined by the number of protein-concentration constraints
that limit growth rate. We use published glucose-limited chemostat data of S. cerevisiae to illustrate that it
uses only two EFMs prior to the onset of fermentation and that it uses four EFMs during fermentation. We
discuss published enzyme-titration data to show that S. cerevisiae and E. coli indeed can express proteins at
growth-rate maximising concentrations. Accordingly, we extend MCA to elementary flux modes operating at
an optimal state. We find that the expression of growth-unassociated proteins changes results from classical
metabolic control analysis. Finally, we show how flux control coefficients can be estimated from proteomics
and ribosome-profiling data. We analyse published proteomics data of E. coli to provide a whole-cell perspective
of the control of metabolic enzymes on growth rate. We hope that this paper stimulates a renewed interest in
metabolic control analysis, so that it can serve again the purpose it once had: to identify general principles
that emerge from the biochemistry of the cell and are conserved across biological species.
1. Introduction

Microbial systems biology has made enormous advances in the last
two decades (see for instance, Scott et al., 2014; Price et al., 2004;
Kochanowski et al., 2021; Scott et al., 2010; Bruggeman et al., 2020;
Scott and Hwa, 2022). A first major insight has been that protein
expression is bounded by constraints that emerge from limited biosyn-
thetic resources (Scott et al., 2010; Molenaar et al., 2009). Competition
for such resources by active genes implies that different cellular func-
tions can trade off (Basan et al., 2020; Berney et al., 2006; Ihssen and
Egli, 2004; Utrilla et al., 2016; Bruggeman et al., 2023; Nyström, 2004).
The second main advance has been that cellular growth rate (equal
to the protein synthesis rate per unit cellular protein) can be related
to the activities of its entire metabolic network (Scott et al., 2010;
Molenaar et al., 2009). Together these two insights have allowed for a
whole-cell perspective on protein expression into protein sectors (Scott
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et al., 2010; Hui et al., 2015), and its implications under the assumption
that natural selection maximises growth rate (O’Brien et al., 2013;
Elsemman et al., 2022). These views allow for the appreciation of
the functions of individual molecular networks in the context of the
entire cell (Mori et al., 2021; Hui et al., 2015). Mathematical models
of whole-cell metabolism exist nowadays that can be used to predict
and interpret whole-cell proteomics and fluxomics data (Elsemman
et al., 2022; O’Brien et al., 2013). This framework, which integrates
quantitative molecular data, computational modelling and microbial
physiology, has proven extremely rewarding (Bruggeman et al., 2020;
Scott and Hwa, 2022).

These recent developments followed after the introduction of
genome-scale stoichiometric models in the 1990s (Varma and Palsson,
1993a,b; Varma et al., 1993; Price et al., 2004) and, before that, a
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general understanding of enzyme biochemistry in the 1960s (Cornish-
Bowden, 2013b; Monod et al., 1963; Cleland, 1963a,b,c). Both of
these rely on system-level concepts and quantitative approaches to
the biochemistry of the cell. Such system ideas can already be found
in the pioneering works of Monod and Maaløe in the 1950s; both
have had an enormous influence on current systems biology (Maaløe,
2012; Monod, 1974; Schaechter, 2006; Monod et al., 1963). Maaløe in
particular has had an important influence on our current thinking on
the protein-expression constraints that limit microbial growth (Maaløe,
2012; Maaløe and Kjeldgaard, 1966).

The introduction of ‘systems thinking’ in the study of the biochem-
istry of metabolism has been key to these developments (Kacser, 1986).
This involved the understanding that metabolic enzymes should be
understood in their ‘systemic context’ of metabolic pathways and that,
since their rates depend on the concentrations of all of their reactants
and modifiers, no enzyme can change in rate without affecting the
rate of others as they are all jointly active in a network (Kacser and
Burns, 1973; Heinrich and Rapoport, 1974). Therefore, there is a priori
no reason to believe that a single enzyme in a metabolic network
dictates the rates of all others (Kacser and Burns, 1979). All enzymatic
rates are set by their concerted actions, and ultimately by their kinetic
properties (encoded in genetic information) and the prevailing physic-
ochemical conditions, both in and outside the cell. The cell behaves as
an ‘organised whole’ (Kacser, 1986).

This concept of ‘systems biochemistry’ has its roots in metabolic
control analysis, with its first papers appearing 50 years ago (Kacser
and Burns, 1973; Heinrich and Rapoport, 1974). This theory was a
logical continuation of quantitative enzymology (Cleland, 1963a,b,c;
Koshland Jr. et al., 1966; Monod et al., 1965; Hill, 1977), the elucida-
tion of the key metabolic pathways of catabolism and anabolism (New-
sholme, 2009) and the application of non-equilibrium thermodynamics
to (catabolic) metabolism (Westerhoff and Van Dam, 1987). At that
time, the biochemistry of enzyme catalysis was understood in quanti-
tative terms. Enzymatic rate equations were deduced from underlying
models of enzyme mechanisms and associated experimental meth-
ods had been developed for the inference of these mechanisms and
their kinetic parameters (Cleland, 1963a,b,c). Together with the basic
knowledge of metabolic pathways (which was completed around the
1960-70s Newsholme, 2009), the question naturally arose how enzymes
operate together and define key features of life. Metabolic control
analysis (Kacser and Burns, 1973; Heinrich and Rapoport, 1974) and
biochemical systems theory (Savageau, 1969a,b, 1970) emerged as
two ways to address this scientific challenge. These two theories were
always more complementary than competing, as they differed in their
approach.1

The identification and kinetic understanding of cooperative en-
ymes (Koshland Jr. et al., 1966; Monod et al., 1965), allosteric feed-
ack and feedforward control (Umbarger, 1956), and the occurrence
f (thermodynamically) irreversible enzymes (Goldbeter, 2018) led
o the hypothesis that such enzymes act as a single ‘rate-limiting’,
pacemaker’, ‘flux-generating’ or ‘key’ enzyme in metabolism — all
ualifications of which the equivalence was uncertain (Krebs, 1957;
ücher and Rüssmann, 1963; Newsholme, 1980). These enzymes were,

1 Metabolic control analysis was less approximate and more rooted in
xperimental data than biochemical system theory. Since biochemical systems
heory exploited more approximate mechanistic mathematical models, it could
ocus on general principles. By focusing on derivatives, metabolic control
nalysis neither needed nor chose to make such simplifying assumptions,
hich made it therefore also more descriptive than explanatory and predictive.
hus, metabolic control analysis addressed the proximate, mechanistic cause
f values of flux control coefficients, in terms of the values of elasticity
oefficients, while not addressing the ultimate (teleological) cause: how it
avours the organism. Biochemical systems theory always tried to marry both
iews.
2

b

after all, the locations in cellular metabolism where regulation oc-
curred and where Gibbs free energy was either harvested or invested.
What was overlooked in these (overly reductive) deductions is that
all enzymes are linked via the concentrations of their reactants and
modifiers, which gives all of them in principle the capacity to influence
and limit the metabolic flux to varying degrees (Fell, 1997). Although
mathematical descriptions of enzyme kinetics were common in the
field at the time, mathematical models of metabolic pathways were not
yet mainstream2 and most discussions about pathways were therefore
based on intuitions. The inherent nonlinearity of metabolic network dy-
namics made it hard to make correct predictions without mathematical
models (Heinrich et al., 1978).

Another confounding factor was the lack of a strict terminology
(Westerhoff et al., 1984). What was precisely meant by ‘metabolic flux’?
Under which conditions can it be measured? What is precisely meant by
‘rate limiting’? Is ‘rate limitation’ a continuous or a discrete measure?
How can it be measured? How do we describe the interconnectedness
of enzymes in networks precisely enough to make predictions? What
the field needed was a way to integrate the quantitative enzyme
kinetics description of single reactions to be able to predict properties of
whole metabolic pathways such as flux and regulation. Since not in all
cases the exact enzyme kinetics (and its parameterisation) was known,
this needed to come from a ‘parameter-independent’ approach. This
is what metabolic control analysis eventually achieved. Two seminal,
pioneering papers addressed that issue for the first time (Kacser and
Burns, 1973; Heinrich and Rapoport, 1974), now fifty years ago. Soon
after, experimental illustrations indicated the experimental applicabil-
ity of the theory and proved that control of metabolic fluxes indeed
need not be confined to single ‘rate-limiting’ enzymes (Groen et al.,
1982). Eventually, the mathematics of MCA was generalised in 1988
by Reder (1988), effectively marrying stoichiometric analysis (Cornish-
Bowden and Hofmeyr, 2002) and metabolic control analysis. After this
breakthrough, extensions followed that dealt with modular, regulatory
and metabolic networks (Bruggeman et al., 2002; Schuster et al., 1993;
Kahn and Westerhoff, 1991; Hofmeyr and Westerhoff, 2001). Many of
these extensions of MCA, which go beyond metabolism and involve
signalling cascades and gene regulation, can be found in a book written
by Schuster & Heinrich (Heinrich and Schuster, 2012). A book with a
more biochemical and experimental focus is ‘Understanding the control
of metabolism’ by Fell (1997). Both outline quantitative approaches to
understand metabolism.

The aim of this work is to consider metabolic control analysis
in the contemporary context of whole-cell models that describe the
metabolism and self-replication of cells (Fig. 1). The order of this paper
is as follows. We start from a definition of evolutionary fitness in
terms of cellular growth rate. We present a stoichiometric description of
steady-state metabolism in the context of a cell that grows in a state of
balanced growth and synthesises both growth-associated and growth-
unassociated proteins. This leads to a definition of the cellular growth
rate as the cellular protein synthesis rate per unit cellular protein. We
consider the maximisation of this quantity and show that a convex
combination of elementary flux modes (EFMs) characterises the optimal
state. After having explained an example of an EFM, we discuss exper-
imental chemostat data to illustrate that only a few elementary flux
modes (EFMs) are used. We proceed by showing how all the optimal
concentrations of metabolites and proteins may be calculated in such
an elementary mode. This analysis leads to the conclusion that a control
coefficient of a metabolic enzyme on metabolic flux is proportional (but
not equal) to its protein fraction. We also derive the control coefficient
of a metabolic enzyme on cellular growth rate. We discuss how these
results are affected by the expression of growth-unassociated proteins.
After illustrating with experimental evidence that metabolic enzymes
are often expressed optimally, we use proteomics data to provide a
whole-cell perspective on the control of growth rate by metabolic
enzymes.

2 For a pioneering, seminal review on mathematical modelling of
iochemical systems see Heinrich & Rapoport (Heinrich et al., 1978).
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Fig. 1. Whole-cell, resource-allocation based modelling of microbial physiology. Contemporary whole-cell, resource-allocation based models of microbial physiology rely on
genome-scale metabolic networks and physical biochemistry of microbial cells (O’Brien et al., 2013). This requires, amongst other information, the inference of all the metabolic
reactions encoded on the genome of a focal microbe and a basic characterisation of the biochemistry of its enzymes. For an explicit example of such a model and its potential for
predicting physiology, see Elsemman et al. (2022).
2. Long-term fitness and the instantaneous growth rate

Since we aim to consider the metabolic control analysis of a mi-
crobial cell that grows at an evolutionarily-maximal rate – one that
has evolved from the sequential fixation of ever-faster-growing ances-
tral genotypes by natural selection – we require an understanding of
evolutionary fitness and its relation to the growth rate.

We define the fitness 𝐹 (𝑇 ) of a genotype (at time 𝑡 = 𝑇 , since time
𝑡 = 0) in accordance with evolutionary theory (Orr, 2009). Let 𝑁(𝑡) be
the numerical abundance of the genotype at time 𝑡 and 𝜇(𝑡) its time-
dependent, instantaneous (specific or per-capita) growth rate at time 𝑡.
Then 𝑑𝑁(𝑡)∕𝑑𝑡 = 𝜇(𝑡)𝑁(𝑡), with solution: 𝑁(𝑇 ) = 𝑁(0)𝑒∫

𝑇
0 𝜇(𝑡)𝑑𝑡, so that

the fitness 𝐹 (𝑇 ) is given by (Bruggeman et al., 2020):

𝐹 (𝑇 ) = 1
𝑇

ln
𝑁(𝑇 )
𝑁(0)

= 1
𝑇 ∫

𝑇

0
𝜇(𝑡)𝑑𝑡. (1)

Thus, the long-term fitness over a period 𝑇 equals the time-averaged
growth rate during that period (Bruggeman et al., 2020). The ‘instan-
taneous fitness’ is taken to be the instantaneous (or specific) growth
rate 𝜇(𝑡). We note that growth rate should be understood here as the
difference between the birth and the death rate.

In constant conditions, therefore, maximal long-term fitness is at-
tained by a constant maximal value of the instantaneous growth rate,
so that 𝐹 (𝑇 ) is then equal to 𝜇.

We note that the long-term fitness of a genotype is not necessar-
ily maximised if it always aims to grow maximally fast, since such
behaviour may reduce its adaptive potential in varying and some-
times stressful environments; in fact, this would reduce the long-term
fitness (average growth rate). We will see below that expression of
proteins that are currently not contributing to growth, but may do so in
the future, reduces the instantaneous growth rate. Expression of such
3

growth-unassociated proteins is a common behaviour of, for instance, E.
coli (Mori et al., 2021; Hui et al., 2015) and is more pronounced at slow
growth than at fast growth (O’Brien et al., 2013). Those proteins can
benefit the long-term fitness when they increase adaptive and survival
potential. Thus, the maximisation of the instantaneous growth rate at
each moment in time may not be a fit strategy for a microbe that needs
to adapt quickly and prepare for future conditions. Despite that, the
metabolic behaviour of E. coli and S. cerevisiae in constant conditions
can be predicted from models that maximise the instantaneous growth
rate as long as we assume that some (a priori set) proportion of the
protein content of cell is not associated with growth (O’Brien et al.,
2013; Elsemman et al., 2022; Hui et al., 2015; Mori et al., 2021; Scott
et al., 2010).

The instantaneous or specific growth rate depends on the concen-
tration and kinetics of the expressed proteins, the concentrations of
growth-rate-influencing chemical compounds in the microbe’s environ-
ment, and the prevailing physicochemical conditions (Bruggeman et al.,
2020), as we shall see below. A cell therefore requires a regulatory
strategy to express the proteins it currently needs and ‘expects’ to need
to meet future challenges. This regulatory strategy has evolved over
time and is a reflection of its evolutionary history, during which the
competition between genetic variants caused the increase in frequency
of those that were fittest (Orr, 2009).

We will limit ourselves to the evolutionary maximisation of the
instantaneous growth rate and allow for the synthesis of proteins for
future, adaptive purposes. We note that the hypothesis that microorgan-
isms maximise their growth rate by optimal expression of catabolic and
anabolic proteins (given a protein fraction that is growth-unassociated),
is used in contemporary microbial systems biology to predict metabolic
fluxes and enzyme concentrations (O’Brien et al., 2013; Elsemman
et al., 2022). We stress that this hypothesis may not hold for all
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microorganisms. It appears to hold for a class of microorganisms,
including E. coli and S. cerevisiae, which we refer to growth-rate pri-
oritising microorganisms. A more comprehensive analysis of this issue
is provided in a recent perspective paper (Bruggeman et al., 2023).

In order to understand the influence of protein concentrations on
the instantaneous growth rate (which is required for MCA) we will first
need to express the growth rate in terms of the biochemical activities
occurring inside cells.

3. Instantaneous growth rate, balanced growth and steady-state
metabolism

We will limit ourselves to the derivation of the instantaneous growth
rate under conditions of balanced growth (Campbell, 1957), in which
it is constant. This state of growth is a property of a population of
cells and is attainable in the lab using continuous cultures (such as
turbostats, chemostats or (pH-)auxostats) (Kuenen, 2019), and can be
approximated with batch cultures. It is characterised by a constant
exponential increase of all the extensive properties of a cell culture
with time (Schaechter et al., 1958). This, as we will show, implies
that the physicochemical state of the average cell in the population
remains constant; it has a steady state metabolism, and can therefore
be reproducibly studied with quantitative methods. Balanced growth
experiments are not limited to growth studies, but can of course also
be done in the presence of stressful conditions, forcing the cell to
express proteins associated with stress tolerance, in addition to those
allocated to metabolism. Alternatively, shifts between balanced-growth
states can be studied. Since the exact physiological state of balanced
growth in given conditions can be faithfully replicated in different labs,
this growth condition underlies most studies in quantitative microbial
physiology and biotechnology (Schaechter, 2006; Egli, 2015).

In this section, we will show that a constant growth rate of a cell
culture implies that: i. the metabolism of the average cell in the pop-
ulation is at steady-state, and ii. the instantaneous growth rate of the
average cell equals its protein synthesis rate per unit cellular protein.
These results will allow us to link the growth rate of the average cell
to its steady-state enzyme biochemistry, which is the starting point of
a metabolic control analysis of a growing cell.

Although the focus is on growth rate and the underlying metabolism,
we shall also have to consider the expression of proteins that are
not associated with growth, but, for instance, with signalling, stress
management and adaptation to new conditions (Hui et al., 2015;
Mori et al., 2021; Scott et al., 2010). It is, for instance, customary
in microbial systems biology to think of the protein expression by a
particular microbe in terms of protein sectors, of which only some serve
a metabolic and growth function (Hui et al., 2015; Mori et al., 2021;
Scott et al., 2010; Elsemman et al., 2022; O’Brien et al., 2013,?).

When the specific growth rate 𝜇 is constant in time, it can be ex-
pressed in terms of different extensive properties of the cell population
(e.g., the total cell volume 𝑉 , the number of cells 𝑁𝐶 , the total copy
umber of a molecule 𝑖 𝑁𝑖 or the total cell mass 𝑀), because they all

increase exponentially in time with the same fixed (time-independent)
rate,

𝜇 = 1
𝑉 (𝑡)

𝑑𝑉 (𝑡)
𝑑𝑡

= 1
𝑀(𝑡)

𝑑𝑀(𝑡)
𝑑𝑡

= 1
𝑁𝐶 (𝑡)

𝑑𝑁𝐶 (𝑡)
𝑑𝑡

= 1
𝑁𝑖(𝑡)

𝑑𝑁𝑖(𝑡)
𝑑𝑡

. (2)

From these relations it directly follows that for the average cell, its
volume 𝑣 = 𝑉 (𝑡)

𝑁𝐶 (𝑡)
, molecule content of type 𝑖 𝑛𝑖 = 𝑁𝑖(𝑡)

𝑁𝐶 (𝑡)
, and mass

𝑚 = 𝑀(𝑡)
𝑁𝐶 (𝑡)

is time independent.
Since the number of molecules 𝑛𝑖 = 𝑁𝑖(𝑡)∕𝑁𝐶 (𝑡) of type 𝑖 in the

average cell, as well as its volume 𝑣 = 𝑉 (𝑡)∕𝑁𝐶 (𝑡), are constant, the
concentration of that molecule in the average cell 𝑛𝑖∕𝑣 is constant. The
average cell has, therefore, a steady state metabolism: the net rates
of synthesis and degradation of all its molecules balance. We note
that steady state applies to the average cell of a population and not
necessarily also to all the single cells in it; in fact, experimental data
4

t

suggests that along the cell cycle metabolism is dynamic (Nordholt
et al., 2020; van Heerden et al., 2023; Papagiannakis et al., 2017). It
turns out that the average cell as considered in population level studies
is approximately halfway along the cell cycle (Bruggeman et al., 2020).

Thus, in balanced growth, the concentrations of all individual
molecule types in the growing culture are independent of time. An
additional way to show this is by defining the concentration 𝑐𝑖 =
𝑁𝑖(𝑡)∕𝑉 (𝑡) of molecule type 𝑖 and considering its rate of change,

0 =
𝑑𝑐𝑖(𝑡)
𝑑𝑡

= 1
𝑉 (𝑡)

𝑑𝑁𝑖(𝑡)
𝑑𝑡

− 1
𝑉 (𝑡)

𝑑𝑉 (𝑡)
𝑑𝑡

𝑁𝑖
𝑉 (𝑡)

(3)

= 1
𝑉 (𝑡)

𝑑𝑁𝑖(𝑡)
𝑑𝑡

− 𝜇𝑐𝑖(𝑡). (4)

he first line indicates that 𝑑 ln𝑁𝑖(𝑡)∕𝑑𝑡 = 𝑑 ln𝑉 (𝑡)∕𝑑𝑡 = 𝜇 is the
ecessary for condition 𝑑𝑐𝑖(𝑡)∕𝑑𝑡 = 0 (which agrees with what we
oncluded above).

The total volume and mass of the cell population may be expressed
n terms of the individual molecules through

(𝑡) =
∑

𝑖
𝑣̄𝑖𝑁𝑖(𝑡) and 𝑀(𝑡) =

∑

𝑖
𝑚̄𝑖𝑁𝑖(𝑡), (5)

ith 𝑣̄𝑖 and 𝑚̄𝑖 as the molar volume and mass, respectively, of molecular
ompound 𝑖. The extensive properties of the cell culture can thus all be
ttributed to a rise in the number of molecules that make up cells.

The term 1
𝑉

𝑑𝑁𝑖
𝑑𝑡 in Eq. (4) denotes the rate of change in the con-

centration of molecular species 𝑖 due to biochemical and biophysical
reactions (i.e., synthesis, degradation or import and export from cells).
The rates of these reactions obey,

1
𝑉 (𝑡)

𝑑𝑁𝑖(𝑡)
𝑑𝑡

=
𝑅
∑

𝑘=1
𝑠̄𝑖𝑘𝑗𝑘(𝒄) = 𝑺̄𝒋(𝒄), (6)

ith 𝑠̄𝑖𝑘 as the stoichiometric coefficient of molecule 𝑖 in reaction 𝑘,
𝑘(𝒄) is the steady-state rate of reaction 𝑘, and 𝑅 is the total number
f reactions. A stoichiometric coefficient 𝑠̄𝑖𝑘 is the 𝑖, 𝑘-th entry of the
toichiometric matrix 𝑺̄ and specifies the number of molecules of type
consumed (𝑠̄𝑖𝑘 < 0) or produced (𝑠̄𝑖𝑘 > 0) during a single occurrence
f reaction 𝑘.

The term − 1
𝑉

𝑑𝑉
𝑑𝑡 𝑐𝑖 = −𝜇𝑐𝑖 in Eq. (4) denotes the reduction in the

concentration due to an increase in cell volume, which is often referred
to as ‘dilution by growth’ or ‘flux to expansion’ (Flint et al., 1981).

The total cell volume of the cell culture 𝑉 (𝑡) increases because
molecules are taken up by the cell (incl. water) and new molecules
are made from them that differ in volume from their substrates. Thus,
combining (2), (5) and (6), we conclude that the cellular growth rate
is equal to the net increase of volume (per unit volume) due to the
import, export and interconversion of the different molecules by the
cell (de Groot et al., 2020),

𝜇 = 1
𝑉 (𝑡)

𝑑𝑉 (𝑡)
𝑑𝑡

=
∑

𝑖
𝑣̄𝑖

𝑅
∑

𝑘=1
𝑠̄𝑖𝑘𝑗𝑘(𝒄). (7)

his relation expresses the growth rate of a culture of cells at a state
f balanced growth in terms of the rates of the underlying biochemical
rocesses.

. Instantaneous growth rate equals the ribosomal protein synthe-
is rate per unit protein

The discussion above did not distinguish between the concentra-
ions of the reactants of metabolism (‘metabolites’) and proteins. We
ow focus only on the stoichiometric matrix of metabolism, and denote
t with 𝑺, and denote the vector with metabolite concentrations by 𝒄
nd the vector with metabolic-enzyme concentrations by 𝒆. We note
hat, in addition to metabolic proteins, any cell contains also other
roteins, having for instance structural or stress-associated tasks.

During balanced growth, it is customary to assume for metabolites
hat their rate of dilution by growth is negligible relative to the rates of
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metabolic reactions. We therefore assume that the steady state reaction
rates or ‘fluxes’ 𝒋 depend on steady state concentrations of metabo-
lites 𝒄𝑠 and metabolic-reaction-catalysing enzymes 𝒆 in the following
manner,

𝑺𝒋(𝒄𝑠; 𝒆) ≈ 𝟎 (8)

This assumption is a common practice in metabolic modelling (but is
not required, see e.g., de Groot et al., 2020). It applies to the reactants
of central metabolism in a growing cell and not to its proteins. Since
proteins consist of several hundreds of amino acids, say 350–400, a
change in their concentration due to the synthesis of a new copy occurs
on a time scale that is about 350 to 400 times slower than a change in
metabolite concentrations. The steady state of protein concentrations is
therefore the outcome of the balance between their synthesis rate (by
the ribosome) and their dilution by (volume) growth. In other words,
for proteins, dilution by growth cannot be neglected.

Let us now turn our attention to protein synthesis. For the 𝑗th
protein, with copy number 𝑁𝑝𝑗 (𝑡) and concentration 𝑝𝑗 (𝑡), its rate
of concentration change equals the difference between its rates of
synthesis, degradation and dilution by growth,

𝑑𝑝𝑗
𝑑𝑡

= 1
𝑉 (𝑡)

𝑑𝑁𝑝𝑗 (𝑡)

𝑑𝑡
− (𝑘𝑗 + 𝜇)𝑝𝑗 (𝑡). (9)

This equation applies to all proteins. The first term on the right-hand
side equals the net synthesis rate of this protein by the fraction of
ribosomes 𝛼𝑗 that are allocated to its synthesis (Scott et al., 2010),

1
𝑉 (𝑡)

𝑑𝑁𝑝𝑗 (𝑡)

𝑑𝑡
= 𝑗𝑅,𝑗 (𝒄𝑠; 𝑒𝑟) = 𝛼𝑗

𝑘̂𝑟
𝑎𝑗

𝑒𝑟𝑓𝑟(𝒄𝑠), (10)

with 𝑗𝑅,𝑗 (𝒄𝑠; 𝑒𝑟) as the net protein synthesis rate of protein 𝑗, containing
the factor 𝑘̂𝑟∕𝑎𝑗 (with 𝑎𝑗 as the amino-acid length of protein 𝑗 and 𝑘̂𝑟 as
the catalytic amino-acid-elongation rate constant of the ribosome (∼20
aa/s) Wu et al., 2022; Young and Bremer, 1976), 𝑒𝑟 the concentration of
ribosomes and 𝛼𝑗 as the fraction of ribosomes allocated to the synthesis
of protein 𝑗.

We obtain after summing over all proteins in a cell, and assuming
that the total concentration of protein in the cell, 𝑝𝑇 , is independent
of time, the following relation between the cellular protein synthesis
rate 𝑗𝑅(𝒄𝑠; 𝑒𝑟) and the protein dilution into new cellular volume (for
simplicity we assume 𝑘𝑗 = 0, so we assume ‘stable’ proteins, as most
catabolic and metabolic proteins are),

𝑗𝑅(𝒄𝑠; 𝑒𝑟) = 𝑘𝑟𝑒𝑟𝑓𝑟(𝒄𝑠) = 𝜇𝑝𝑇 , (11)

containing 𝑘𝑟 =
∑

𝑗 𝛼𝑗 𝑘̂𝑟∕𝑎𝑗 as the average catalytic rate constant of
protein synthesis. We assumed that all ribosomes are actively translat-
ing proteins. We exclude the hibernating ribosome fraction (Wu et al.,
2022; Scott et al., 2010) (we do not require this assumption, but make
it here for simplicity). We note that a ribosome is partially composed
out of proteins itself and the concentrations of its proteins are included
in 𝑝𝑇 .

The total protein concentration of the cell 𝑝𝑇 is the sum of the total
growth-associated protein concentration 𝑒𝑇 and the total concentration
of growth-unassociated proteins 𝑝𝑁𝐺,

𝑝𝑇 = 𝑒𝑇 + 𝑝𝑁𝐺 . (12)

Growth-associated proteins are all the enzymes involved in catabolism
and anabolism, so carrying fluxes in the metabolic and biosynthetic
network of the cell. The reactions they catalyse feature as entries in
the stoichiometric matrix of a genome-scale stoichiometric model of
a whole cell. Growth-unassociated proteins are metabolically inactive
and have, for instance, structural functions. Examples of the latter
type of protein include cell-septum proteins (FtsZ), structural pro-
teins (MreB, flagellum), and DNA-binding proteins (H-NS, transcription
factors) and proteins that are currently not needed for growth but,
5

potentially, for future conditions (O’Brien et al., 2016).
From (11) we conclude that the specific growth rate of a population
at balanced growth equals the protein synthesis rate divided by the
cellular protein concentration,

𝜇 =
𝑗𝑅(𝒄𝑠; 𝑒𝑟)

𝑝𝑇
, (13)

which, using (12), shows that the growth rate decreases with the
protein fraction allocated to growth-unassociated processes,

𝜇 =
𝑗𝑅(𝒄𝑠; 𝑒𝑟)

𝑝𝑇

𝑝𝑇 − 𝑝𝑁𝐺
𝑒𝑇

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=1

=
𝑗𝑅(𝒄𝑠; 𝑒𝑟)

𝑒𝑇

(

1 −
𝑝𝑁𝐺
𝑝𝑇

)

. (14)

This equation is valid during balanced growth (see also Scott et al.,
2010). It plays an important role in what follows next when we max-
imise the specific growth rate, and study the characteristics of the
resulting optimal metabolic network and the control coefficients of its
growth-associated proteins, at optimal, growth-rate maximising con-
centrations. It indicates that maximisation of the growth rate at a fixed
growth-unassociated protein fraction amounts to maximising 𝑗𝑅∕𝑒𝑇 , by
optimally allocating biosynthetic resources over catabolic and anabolic
reactions (Wortel et al., 2014).

From Eqs. (13) and (14) we can deduce several insightful relations
between the instantaneous balanced growth rate and the concentrations
of protein pools (sectors) in a cell — relations associated with the
analysis of metabolic control. First, enhancing the concentration of
all proteins equally in a cell, which as we will see in a later section,
speeds up all the rates of reactions catalysed by enzymes (Eq. (22)),
does not necessarily increase the growth rate, as both the numerator
and denominator increase. Second, when we add more proteins to
the cell that do not contribute to metabolism or protein synthesis,
the denominator of (13) increases without an increase in the numer-
ator, indicating a reduction in growth rate. Thus, the response of the
growth rate to an increase of the protein concentration in the cell
depends on the cellular function of that protein. Third, (14) indicates
that at a constant total cellular protein concentration 𝑝𝑇 , which is
for instance a property of E. coli across conditions (deviation of less
than ∼ 15% Oldewurtel et al., 2021), growth rate is maximised by
maximising the protein synthesis rate of a cell. This is to be achieved by
gene regulation (Planqué et al., 2018) that optimises the concentrations
of metabolic enzymes, including ribosomes, an illustration of ‘optimal
allocation of finite biosynthetic resources’ (Molenaar et al., 2009).

5. Steady-state metabolism, the flux cone, and elementary flux
modes

At steady-state metabolism, the steady-state flux vector 𝒋 = 𝒋(𝒄𝑠; 𝒆)
of all the metabolic reactions (growth-associated processes) obeys

𝑺𝒋 = 𝟎. (15)

This equation indicates that 𝒋 lies in the right nullspace of 𝑺. A basis for
this nullspace are the columns of a so-called kernel matrix 𝑲 (Reder,
1988; Heinrich and Schuster, 2012).

For a given 𝑺, there exist many kernel matrices. Each column of a
kernel matrix represents a set of flux values that together describe a
steady-state, mass-flow route through a metabolic network that has the
properties that each metabolite in it is synthesised and consumed at an
equal rate. The non-uniqueness of the kernel matrix unfortunately leads
to an unclear definition of metabolic pathways.

To overcome this problem, we set out the define a set of unique
steady-state flux vectors for a given stoichiometric matrix 𝑺, so that
all steady state flux vectors can be constructed from these. We split all
the reversible reactions – those that would be described with reversible
kinetics in a kinetic model – into an irreversible forward and backward

rate such that all reaction rates are again positive. Thus, we introduce
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Fig. 2. The flux cone, a flux-equality constraint and the optimisation of a fluxobjective with flux balance analysis. A. A 3-D flux space is shown, each axis corresponds to a
different flux. All fluxes are positive — reversible reactions have been split, as described in the main text. The planes correspond to the steady-state condition of a single metabolite
concentration, which leads to a linear combination of fluxes. B. At the intersection lines of the planes, several metabolite concentrations are at steady state simultaneously, giving
rise to steady-state subnetworks. These intersection lines together form the edges of the flux cone (shown in C.). The edges are the EFMs. The planes between two adjacent EFMs are
called facets, which together bound the flux cone. The flux cone corresponds to the feasible steady-state solution space, corresponding to the steady-state and flux-(ir)reversibility
constraints. D. A new plane is added in blue, which corresponds to a flux-equality constraint. The segment that lies in the flux cone is the feasible steady-state solution space,
forming the polytope. E. An objective plane is shown, corresponding to a linear combination of flux values, for three different values of the objective (different shades of green).
The aim is to maximise the objective value, while meeting all the flux constraints (steady state, (ir)reversibility and (in)equality constraints). This implies that the maximum
objective is attained in a corner point of the polytope (red point in F), which is an EFM. This is the essence of flux balance analysis.
a new augmented matrix 𝑺′ and extend the vector of reaction fluxes to
obtain 𝒋′, so that Eq. (15) is replaced by

𝑺′𝒋′ = 𝟎, 𝒋′ ≥ 𝟎. (16)

All one needs to do is to add to 𝑺 new columns that are the reversible
reaction columns of 𝑺 with a minus sign and add the new irreversible
fluxes to 𝒋.

The set of flux vectors that satisfies Eqs. (16) form the so-called flux
cone  (Fig. 2A–C),

 =
{

𝒋′ | 𝑺′𝒋′ = 𝟎, 𝒋′ ≥ 𝟎
}

. (17)

The vectors that ‘‘span’’ this flux cone are called elementary flux modes
(EFMs, or more generally extreme rays) (Gagneur and Klamt, 2004;
Schuster et al., 2000; Schuster and Hilgetag, 1994; Papin et al., 2004).
(Here ‘‘span’’ does not refer to the usual linear algebra notion of taking
arbitrary linear combinations; instead, we need to restrict to ‘conical
linear combinations’, involving only positive coefficients.) Contrary to
the basis of the null space of 𝑺, the elementary flux modes are unique
6

(up to a scalar multiple, just as, e.g., eigenvectors are; we take the
convention that the last element is always set to 1). Together they give
rise to an unambiguous set of steady-state metabolic pathways corre-
sponding to a stoichiometric matrix – e.g., the entire set ‘encoded’ by an
entire genome (Schuster et al., 2000) or feasible in one condition (Kelk
et al., 2012).

Thus, the set of elementary flux modes represents a unique set of
feasible, steady-state flux vectors. From them all the steady-state flux
vectors of 𝑺′ can be constructed as a conical sum of flux vectors of
elementary flux modes 𝒆𝑖,

𝒋′ =
𝐸
∑

𝑖=1
𝜆𝑖𝒆𝑖, ∀𝑖 ∶ 𝜆𝑖 ≥ 0, (18)

where 𝐸 is the number of elementary flux modes. In Fig. 2A–C, we
show an example of an idealised cone.

The entire metabolic network encoded by the genome of a cell has
an astronomical number of elementary flux modes, which prevents
their complete enumeration at genome scale (Gagneur and Klamt,
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2004). Although the set of elementary flux modes that are feasible
under particular experimental conditions is of course considerably less,
it is still a huge number (Kelk et al., 2012). Below we will see,
however, that experimental data and theoretical expectations indicate
that cells likely use only a handful of EFMs. On top of that, we will also
show that evolutionary maximisation of the instantaneous growth rate
implies that cells use a minimal number of EFMs in their evolutionarily
optimal state. Finally, we will show that the control coefficient of
proteins, occurring in this minimal set of EFMs, on the growth rate and
metabolic flux can be related to their protein-concentration fraction and
growth-unassociated protein fraction.

6. Properties and examples of elementary flux modes

An example of the pieces of a single elementary flux mode are
shown in Fig. 3. Elementary flux modes have a number of useful
properties for the analysis of whole-cell metabolism (Gagneur and
Klamt, 2004; Schuster et al., 2000; Schuster and Hilgetag, 1994; Papin
et al., 2004; De Groot et al., 2019; Müller et al., 2014; Wortel et al.,
2014),

1. They are minimal: none of their reactions can be removed with-
out violating the steady-state requirement. Another way of say-
ing this is that they have minimal support (EFM vectors have a
maximal number of zero entries),

2. They are nondecomposable: no elementary flux mode contains
another elementary flux mode,

3. They are elementary : all steady-state flux distributions can be
retrieved from conical combinations of elementary flux modes,

4. EFMs are maximal yield solutions. The metabolic pathway with a
maximum value of a ratio of two flux values (generally called a
yield) is always an elementary mode,

5. An EFM has one reaction more than the rank of its associated
stoichiometric matrix (so 1 independent flux value, from which
all others can be inferred),

6. An EFM is a specific flux maximiser of a kinetic model. Thus,
the maximal value of a metabolic flux per unit total protein
needed to sustain that flux, achieved by optimising the enzyme
concentrations under a single total concentration constraint, is
achieved by an EFM in a kinetic model of metabolism. The
maximal number of EFMs that together maximise any specific
flux in a kinetic model with 𝐶 protein concentration constraints
is equal to or smaller than 𝐶, and

7. A single EFM is a solution of a flux balance analysis computation
with one flux equality constraint (i.e., one flux set to a specific
value) satisfied in the optimal state. An FBA model with 𝐶
flux equality constraints satisfied in the optimal state has as an
optimal solution a flux vector that is a conical combination of
maximally 𝐶 EFMs.

These amazing properties of EFMs make them ideally suited to study
the metabolism of cells, regardless of whether they are modelled with
kinetic or stoichiometric models.

Next, we will discuss the role of EFMs in genome-scale stoichiomet-
ric models before we shift to the kinetic models of metabolism and
a characterisation of the optimal state of cells in terms of metabolic
control analysis.

7. Elementary flux modes are solutions of yield maximisations
with flux balance analysis

An example of a flux balance analysis (Varma and Palsson, 1993a,b;
Varma et al., 1993) computation is the following linear program with
optimal solution 𝒋𝑜 (assuming a medium with glucose as the sole carbon
source),

𝒋𝑜 = argmax
{

𝑗𝑏𝑖𝑜𝑚𝑎𝑠𝑠 | 𝒋 ∈  and 𝑗𝑔𝑙𝑐 = 1
}

. (19)
7

𝒋

The flux constraints derive from an intersection of the flux cone (spec-
ifying the steady state and flux positivity constraints; Eq. (16)) with
the hyperplane that results from the flux-equality constraint that the
glucose uptake rate 𝑗𝑔𝑙𝑐 equals 1 (Fig. 2D). The maximisation objective
is the flux through the ‘biomass reaction’, which generally specifies
the macromolecular composition of cells, i.e., the number of moles of
DNA, RNA, proteins, lipid and ATP (growth-associated maintenance
requirement) needed per gram biomass as an elementally-balanced
reaction (Orth et al., 2010). These macromolecules need to be made
from the chemical building blocks by the anabolic reactions of the cells,
given the Gibbs free energy supplied by the catabolic reactions of the
cell. Catabolism and anabolism both ‘feed’ on extracellular nutrients.

When we intersect the flux cone with one flux-equality constraint
(Fig. 2D), the space of feasible solutions shrinks from the entire cone to
a set for which 𝑗𝑔𝑙𝑐 is always 1. The resulting object is called a polytope,
spanned by the EFMs that can accommodate 𝑗𝑔𝑙𝑐 = 1 (all the others are
now no longer feasible given the constraints).

The objective 𝑗𝑏𝑖𝑜𝑚𝑎𝑠𝑠 corresponds to another hyperplane, which we
move through the polytope in the direction of increasing 𝑗𝑏𝑖𝑜𝑚𝑎𝑠𝑠 until
we leave the polytope (after which we no longer meet the constraints)
(Fig. 2E–F). The maximiser is then generally attained in a cornerpoint
(vertex) of the polytope, due to Bauer’s maximum principle, and is
therefore an EFM. This effectively proves that the maximal yield so-
lution is always attained by an EFM, as maximising the rate of biomass
formation given the glucose uptake rate maximises their ratio, which
equals the maximal biomass yield on glucose. Note that the same
number for the yield is obtained for any value of the glucose uptake
rate, as the EFM describing the solution has a constant (maximal) yield
(and the cone is otherwise unbounded). Thus in this usual FBA setting,
FBA predicts maximal yield solutions and not maximal growth rate
solutions.

When an additional constraint is added to the previous linear pro-
gram and would be hit in addition to 𝑗𝑔𝑙𝑐 = 1, e.g., 𝑗𝑎𝑡𝑝𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 4
as in the next example, then 𝑗𝑏𝑖𝑜𝑚𝑎𝑠𝑠 would generally be lower than
the current value (e.g., because glucose is also needed to satisfy the
growth rate-independent (ATP) maintenance constraint) and attained
in a conical combination of two EFMs as we shall see next. In this case,
less biomass is made per unit glucose and, accordingly, the biomass
yield on glucose is lower.

Now we focus on a linear program (20) with one additional flux-
equality constraint, associated with the growth rate-independent main-
tenance requirement (Pirt, 1982), to arrive at a minimal, realistic
description of a genome-scale model. For instance, we might consider
aerobic respiratory growth of E. coli or S. cerevisiae in a chemostat
below the critical growth rate (when overflow metabolism is absent).
Consider

𝒋𝑜 = argmax
𝒋

{

𝑗𝑏𝑖𝑜𝑚𝑎𝑠𝑠 | 𝒋 ∈  and 𝑗𝑔𝑙𝑐 = 1, 𝑗𝑎𝑡𝑝𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 4
}

. (20)

The cone is now the feasible solution space, spanned by EFMs, and is
intersected with two (orthogonal) hyperplanes, each associated with a
single flux-equality constraint. The optimal solution 𝒋𝑜 is in this case
generally a conical combination of two EFMs, one giving rise to the
maximal ATP yield on glucose to satisfy the maintenance requirement
(and generally a zero growth rate) and the other giving rise to the
maximal biomass yield on glucose. The net biomass yield on glucose,
given by the conical combination of those two EFMs, is now lower
than its maximum. A useful insight is therefore that, given the active
stoichiometric matrix associated with the optimal outcome of (20), the
optimal solution can also be obtained by doing two independent FBAs,
each giving rise to one EFM and associated with a different equality
constraint (one for ATP maintenance and the other for growth). These
together make up the optimal solution of (20).

Finally, we consider this example

𝒋𝑜 = argmax
{

𝑗𝑏𝑖𝑜𝑚𝑎𝑠𝑠 | 𝒋 ∈  and 𝑗𝑔𝑙𝑐 = 1, 𝑗𝑎𝑡𝑝𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 ≥ 4
}

. (21)

𝒋
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Fig. 3. Illustration of the complexity of a single biomass-producing EFM, computed with a genome-scale model iJO1366 of E. coli (Orth et al., 2011). A flux balance
analysis calculation with two inequality constraints (glucose uptake rate and growth-independent ATP maintenance rate) and with biomass production as optimisation target yielded
an optimal flux vector. The EFM associated with the maximal biomass yield was subsequently calculated and some of its metabolic networks are shown here. This figure illustrates
the complexity of single EFMs: they can accommodate all the reactions needed to make all cellular macromolecules and byproducts from a supplied (mineral) growth medium. We
choose to draw the metabolic network in modules, but this does not mean that the network is disconnected (the same intermediates occur in different modules and are explicitly
mentioned, in addition to end products). The shown metabolic networks maps were made with ‘Escher’ (King et al., 2015).
In this case, we do not know whether 𝑗𝑎𝑡𝑝𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 4 in the optimal
solution (as this flux can exceed 4); the optimal solution might therefore
be a single EFM or a combination of two. This may (generally) be
determined by observing whether 𝑗𝑎𝑡𝑝𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 equals 4 or exceeds 4
in the optimal solution, i.e., whether the flux equality is satisfied or
not. Since most constraints are given as inequalities in FBA, this usage
is very common.

Thinking in terms of FBA calculations and conical combination of
EFMs – with their intuitive properties – leads to many insights that
are not readily apparent when one merely performs FBAs without ever
thinking about the associated mathematical theory. For us, this has
been particularly instrumental in understanding how to think about
growth and metabolic strategies of the cell (de Groot et al., 2020; De
Groot et al., 2019; Bruggeman et al., 2020). For instance, when 1 EFM is
active, the number of active fluxes in the EFM (with nonzero values) is
exactly one more than the rank of the stoichiometry matrix of this EFM
(obtained by removing all the columns from the stoichiometry matrix
that corresponds to reactions with a zero flux in the EFM). When 𝐶
constraints are active then the number of nonzero fluxes equals 𝐶 plus
the rank of the relevant stoichiometric matrix.

This basic understanding of FBA will be exploited below to show
that EFMs are also the optimal solutions of kinetic models of whole-
cell metabolism. After that we can study the flux control properties of
metabolic enzymes on fluxes and growth rate in a whole-cell context.

8. Universal relation between the rate and concentration of an
enzyme

For a general mathematical description of growth-rate maximisation
by constrained optimisation of protein concentrations, we need to
relate the rate of an enzyme-catalysed reaction to the concentrations
of the associated reactants, modifiers and the catalysing enzyme: these
are the optimisation variables for growth rate maximisation; for yield
maximisations only fluxes are needed as variables. This is achieved
8

by the theory of enzyme kinetics, which was given a firm founda-
tion in the late 1960s by the seminal works of Cleland for single
subunit enzymes (Cleland, 1963b,c,a) and later also for cooperative
enzymes (Monod et al., 1965; Koshland Jr. et al., 1966; Hofmeyr and
Cornish-Bowden, 1997).

Enzyme kinetics theories indicate that the catalytic rate 𝑣 of an
enzyme equals a product of four factors (Heinrich et al., 1978; Cornish-
Bowden, 2013a): a catalytic rate constant defined in the forward direc-
tion 𝑘+, the enzyme concentration 𝑒, the substrate saturation function
of the enzyme 𝑓+

𝑗 (𝒄), the vector of (steady-state or non-steady-state)
metabolite concentrations 𝒄, and the displacement from thermody-
namic equilibrium 1 − 𝑒

𝛥𝜇𝑗 (𝒄)
𝑅𝑇 (with 𝛥𝜇𝑗 (𝒄) as the Gibbs free energy of

the reaction),

𝑣𝑗 (𝒄; 𝑒𝑗 ) = 𝑘+𝑗 𝑒𝑗 𝑓
+
𝑗 (𝒄)

(

1 − 𝑒
𝛥𝜇𝑗 (𝒄)
𝑅𝑇

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓𝑗 (𝒄)

. (22)

Note the convention that a steady state enzymatic rate is denoted by 𝑗
and otherwise by 𝑣.3

3 The steady-state flux 𝑗 applies when all the metabolite concentrations
are constant, because then net rates of synthesis and consumption balance —
so during balanced growth. The resulting steady-state rate of each enzyme
we call a flux. A flux is a function of all the enzyme concentrations, the
kinetic parameters of all the expressed enzymes (catalysing the synthesis and
consumption reactions occurring in metabolism), and the concentrations of
fixed extracellular nutrients and products of growth. The rate 𝑣 of an enzyme
only depends on the kinetic properties and concentration of the associated
enzyme and the concentrations of the associated reactants and modifiers. The
rate of an enzyme does not require a steady state metabolic network. MCA
distinguishes between fluxes and rates, because fluxes are systemic properties
of steady-state metabolic networks, while rates are properties also defined
for enzyme in isolation (e.g., in a test tube) and defined for all values of its
reactants and modifier concentrations.
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For our purposes, an important property that follows from this
relation is that the rate of the enzyme 𝑣𝑗 is directly proportional to
the enzyme concentration invested in it, so that for any 𝜆,

𝑣𝑗 (𝒄; 𝜆𝑒𝑗 ) = 𝜆𝑣𝑗 (𝒄; 𝑒𝑗 ).

This relationship results from the derivation of enzyme kinetics re-
gardless of the method (e.g., quasi-steady state or rapid-equilibrium
approximation) and applies to mono- as well as multimeric (allosteric
or cooperative) enzymes (Cornish-Bowden, 2013a; Segel, 1975). It
does not apply when different enzymes form complexes and directly
‘channel’ reactants to each other (Sauro and Kacser, 1990; Kholodenko
and Westerhoff, 1993).

In MCA (Heinrich and Rapoport, 1974; Kacser and Burns, 1973), en-
zymes enter with their elasticity coefficients, which equal the derivative
of the logarithm of their rate with respect to any of the concentrations
that influence it (i.e., a reactant, modifier (e.g., feedback metabolite)
or enzyme catalyst),

𝜖
𝑣𝑗
𝑐𝑘 =

𝜕 ln 𝑣𝑗
𝜕 ln 𝑐𝑘

.

ote that this derivative is taken with all other concentrations held
onstant (hence, it is a partial derivative). This implies that all changes
ade to concentrations that do not occur in the rate equation do not
irectly affect the rate and lead to a zero elasticity coefficient. Since
𝑗 ∝ 𝑒𝑗 , we also conclude that 𝜖

𝑣𝑗
𝑒𝑗 = 1, indicating that the response

of metabolism to changes in enzymatic rates can be experimentally
studied by changing the concentration of enzymes, using, for instance,
titratable promoters of metabolic genes (Jensen et al., 1993c; Walsh
and Koshland Jr., 1985).

9. Flux and growth rate scaling with cellular protein content of
growth-associated and unassociated proteins

Before we consider the maximisation of the growth rate by the con-
strained optimisation of protein concentrations, we derive a few rela-
tionships that address the scaling of steady-state properties of metabolic
networks, i.e., fluxes and concentrations, with enzyme concentrations.
We require these to understand how the specific growth rate, defined
in equation (13) as 𝑗𝑅∕𝑝𝑇 , the protein synthesis rate divided by the
protein concentration of a cell, scales with the total protein content al-
located to growth-associated and growth-unassociated processes. These
relationships also lead to the celebrated summation theorems of MCA.

The rate of an enzyme is usually proportional to its concentration
(Eq. (22)). With the notion that a function 𝑓 (𝒙) is called 𝑝-homogeneous
(or 𝑝-order homogeneous) if, for 𝜆 ∈ R, 𝑓 (𝜆𝒙) = 𝜆𝑝𝑓 (𝒙), we conclude
that the rate equations of enzymes are 1-homogeneous (or first-order
homogeneous) functions of enzyme concentrations. Given a steady-
state metabolism, 𝑺𝒋 = 𝟎, we conclude also that multiplication of
all enzyme concentrations by the factor 𝜆 maintains steady state at
unaltered metabolite concentrations (Giersch, 1988a,b; Westerhoff and
Van Dam, 1987):

𝑺𝒋(𝒄𝑠; 𝜆𝒆) = 𝜆𝑺𝒋(𝒄𝑠; 𝒆) = 𝟎. (23)

This relation indicates that (steady-state) metabolic fluxes and steady-
state metabolite concentrations are respectively 1-homogeneous func-
tions and 0-homogeneous functions of enzyme concentrations,

𝒋(𝜆𝒆) = 𝜆𝒋(𝒆), and 𝒄𝑠(𝜆𝒆) = 𝜆0𝒄𝑠(𝒆) = 𝒄𝑠(𝒆). (24)

Euler’s theorem for a 𝑝-homogeneous function 𝑓 ∶ R𝑅 → R with
variables 𝑥1,… , 𝑥𝑅 states that
𝑅
∑

𝑘=1

𝜕 ln 𝑓
𝜕 ln 𝑥𝑘

= 𝑝.

When we apply this to our setting, we obtain
𝑅
∑ 𝜕 ln 𝑗𝑙 = 1,

𝑅
∑ 𝜕 ln 𝑐𝑙 = 0,
9

𝑘=1 𝜕 ln 𝑒𝑘 𝑘=1 𝜕 ln 𝑒𝑘
When we introduce the notations of the control coefficients from
metabolic control analysis,4

𝐶𝑗𝑙
𝑘 =

𝑒𝑘
𝑗𝑙

𝜕𝑗𝑙
𝜕𝑒𝑘

=
𝜕 ln 𝑗𝑙
𝜕 ln 𝑒𝑘

, 𝐶𝑐𝑙
𝑘 =

𝑒𝑘
𝑐𝑙

𝜕𝑐𝑙
𝜕𝑒𝑘

=
𝜕 ln 𝑐𝑙
𝜕 ln 𝑒𝑘

,

we recover, respectively, the summation theorems of flux and concen-
tration control,
𝑅
∑

𝑘=1
𝐶𝑗𝑙
𝑘 = 1,

𝑅
∑

𝑘=1
𝐶𝑐𝑙
𝑘 = 0. (25)

The implications of these two last equations relate to a known
rinciple of metabolic control theory, which is either referred to
s ‘multisite modulation’ (Thomas and Fell, 2000) or the ‘Universal
ethod’ (Kacser and Acerenza, 1993), with implications for biotechnol-

gy. This principle states that changes in metabolic flux can be attained
y changes in enzyme concentrations without accompanying changes
n metabolite concentrations as long as all enzyme concentration are
caled by the same factor, making (24) valid. How can a cell implement
uch a method? Consider the situation that a cell expresses a stress
ene such that more RNA polymerases transcribe that gene. Let us
ssume that 0.1% of all polymerases are allocated to that gene, and
hat therefore 99.9% are left for the genes that were already being
ranscribed. Then about 0.1% of the mRNA pool, assuming the same
ife times, etc., becomes ‘stress mRNA’, leading to about 0.1% usage
f ribosomes; the other 99.9% of ribosomes are actively transcribing
he remaining protein. Thus, passive and unbiased (same kinetics, same
ffinity) competition for transcriptional and translation resources may
ead naturally to the ‘Universal Method’. Plotting proteomics data of
etabolic proteins as function of growth rate indeed often shows a

inear relation; behaviour in line with the Universal Method (Elsemman
t al., 2022; Mori et al., 2021). (A cell might in the end be its own
est biotechnologist!) Experiments with titrated over-expression of ‘un-
eeded’ proteins also indicate a linear relation between the growth rate
nd the unneeded protein fraction, in agreement with Eq. (14) (Scott
t al., 2010).

We can exploit the scaling relationship (24) between steady-state
lux and enzyme concentrations to understand how growth-unassociated
roteins influence the growth rate. Consider again the whole cell and
ssign all the growth-associated enzymes to the enzyme pool 𝑒𝑇 . These
elate to the total protein content 𝑝𝑇 as

𝑇 = 𝑝𝑇 − 𝑝𝑁𝐺 . (26)

his means that we can write, using equation (24),

(𝑒𝑇 ) = 𝒋(𝑝𝑇 (1 − 𝜙𝑁𝐺)) = (1 − 𝜙𝑁𝐺)𝒋(𝑝𝑇 ), (27)

ith 𝜙𝑁𝐺 = 𝑝𝑁𝐺
𝑝𝑇

as the non-growth associated protein fraction. Eq. (14)
is thus seen to be valid not only for the protein synthesis flux, but for
all fluxes. We may also write equation (14) as

𝜇(𝜙𝑁𝐺) = 𝜇(0)(1 − 𝜙𝑁𝐺) (28)

where 𝜇(0) is the (theoretical) maximal growth rate at which all pro-
teins are associated to growth. Maximisation of growth rate therefore
implies that 𝜙𝑁𝐺 → 0. The cell, however, cannot achieve this, because
ome of those growth-unassociated proteins are essential (such as pro-
eins for cell structure, gene control, etc.) and some are needed to allow
daptation to new conditions, such as stress responses (Hui et al., 2015;
ori et al., 2021; O’Brien et al., 2013) or the rapid uptake of alternative

utrients (Ihssen and Egli, 2005).

4 Since 𝜖𝑣𝑘𝑒𝑘 = 1, we also deduce that 𝐶𝑗𝑙
𝑘 = 𝜕 ln 𝑗𝑙

𝜕 ln 𝑒𝑘
= 𝜕 ln 𝑗𝑙

𝜕 ln 𝑣𝑘
and 𝐶𝑐𝑙

𝑘 = 𝜕 ln 𝑐𝑙
𝜕 ln 𝑒𝑘

=
𝜕 ln 𝑐𝑙
𝜕 ln 𝑣𝑘

. Thus, control coefficients can be understood as steady-state, systemic
responses to terms of enzyme-rate or enzyme-concentration perturbations.
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10. Maximisation of instantaneous growth rate in whole-cell ki-
netic models is also achieved by elementary flux modes

EFMs do not only have a relevance for purely stoichiometric models,
they also play a role in the constrained optimisation of the steady-state
fluxes of kinetic models (Müller et al., 2014; Wortel et al., 2014). This is
somewhat surprising, because EFMs are purely stoichiometric objects,
defined solely on the basis of the stoichiometric matrix. They are there-
fore independent of enzyme kinetics. Moreover, optimisation of kinetic
models does not concern fluxes as optimisation variables, but rather the
concentrations of reactants, modifiers and enzymes (from which fluxes
are then calculated). Still, EFMs surface as the maximisers of the flux
of kinetic models, given a constraint on the maximal concentrations
of proteins in a cell and the kinetic parameters of all its enzymes. We
will next illustrate that the maximisation of the specific growth rate
(Eq. (13)) by the constrained optimisation of protein concentrations is
achieved by an elementary flux mode, when we take the kinetics of
catabolic and anabolic reactions in a cell into account, in addition to
their stoichiometry (Müller et al., 2014; Wortel et al., 2014).

We consider the steady state of a kinetic model of a whole cell
(Fig. 1). The dependence of reaction rates on the concentrations of
reactants, effectors and catalysts is given by the universal enzyme
kinetic Eq. (22). Our aim is to maximise the specific growth rate of the
cell at a fixed growth-unassociated protein fraction. Eq. (14) indicates
that this amounts to the maximisation of the protein synthesis flux 𝑗𝑅
by optimising the concentration of growth-associated proteins under
the constraint that they sum to 𝑒𝑇 , in steady state (cf. equation (15)).
The optimisation variables in this problem are the concentrations of all
metabolites and the enzymes. This is a nonlinear optimisation problem
because the metabolite concentrations enter the rate equations in a
nonlinear manner. For a simple example we refer to Wortel et al.
(2014).

The maximisation problem of the specific growth rate of a whole-
cell kinetic model, assuming a fixed growth-unassociated protein frac-
tion 𝑝𝑁𝐺∕𝑝𝑇 , by optimal allocation of biosynthetic resources for growth-
associated proteins, and under the constraints that: i. metabolism is at
steady state and ii. the enzyme concentrations sum to a constant (𝑒𝑇 ),
has the following mathematical description,5

max
𝒄,𝒆

{ 𝑗𝑅(𝒄, 𝒆)
𝑒𝑇

|

|

|

𝑺𝒋(𝒄, 𝒆; 𝒄0) = 𝟎, ∀𝑘 ∶ 𝑗𝑘(𝒄, 𝑒𝑘; 𝒄0) = 𝑘𝑘𝑒𝑘𝑓𝑘(𝒄; 𝒄0),

𝑒𝑇 = 𝟏𝑇 𝒆, 𝒄 ≥ 𝟎, 𝒆 ≥ 𝟎
}

. (29)

where the vector 𝒄0 denotes the fixed environmental nutrient and
product concentrations. These are included explicitly in the description,
because the environmental conditions influence the optimal state.

To show that the solution of this optimisation problem is indeed
an elementary flux mode, we first recast the optimisation problem.
Eqs. (24) indicate that the optimal metabolite concentrations are inde-
pendent of the total concentration of growth-associated enzymes (𝑒𝑇 )
and that the optimal flux values scale in proportion to the total con-
centration of growth-associated enzyme. This implies that the previous
optimisation problem can be rewritten as (for a step-by-step exposition
see Wortel et al., 2014):

min
𝒄,𝒆

{

𝑒𝑇
|

|

|

𝑺𝒋(𝒄, 𝒆; 𝒄0) = 𝟎,∀𝑘 ∶ 𝑗𝑘(𝒄; 𝒄0) = 𝑘𝑘𝑒𝑘𝑓𝑘(𝒄; 𝒄0),

𝑒𝑇 = 𝟏𝑇 𝒆, 𝒄 ≥ 𝟎, 𝒆 ≥ 𝟎, 𝑗𝑅 = 1
}

. (30)

5 Note that the flux exchanges between the network of growth-associated
nd growth-unassociated processes are neglected here. The consumption of,
or instance, ATP by growth-unassociated processes (e.g., when a signalling
rotein is phosphorylated) is neglected in the consideration of the growth-
ssociated metabolic network. It is also generally believed that such fluxes are
egligible in genome-scale stoichiometric models, as those costs are considered
10

n terms of the maintenance requirements. b
Thus, when we know the actual amount of available protein for growth,
say 𝑒′𝑇 , we can calculate the optimal protein concentrations from the
optimal solution 𝒆𝑜 found by solving (30), by scaling them with a factor
𝑒′𝑇 ∕𝑒

𝑜
𝑇 . (The specific growth rate is in both cases the same, by (24)).

We can simplify the mathematical description further by substitut-
ing for each enzyme concentration 𝑒𝑘 = 𝑗𝑘∕(𝑘𝑘𝑓𝑘(𝒄; 𝒄0)), using Eq. (22),

min
𝒄,𝒋

{

∑

𝑘

𝑗𝑘
𝑘𝑘𝑓𝑘(𝒄; 𝒄0)

|

|

|

𝑺𝒋 = 𝟎, 𝒄 ≥ 𝟎,∀𝑘 ∶
𝑗𝑘

𝑘𝑘𝑓𝑘(𝒄)
≥ 0, 𝑗𝑅 = 1

}

. (31)

We proceed by splitting all the reversible reactions into their irre-
versible parts (as we did above). We consider the resulting optimisation
problem for any fixed, steady-state metabolite concentration vector 𝒄∗

satisfying 𝑓𝑘(𝒄∗; 𝒄0) ≥ 0 for all 𝑘,6

min
𝒋′

{

∑

𝑘

𝑗′𝑘
𝑘′𝑘𝑓

′
𝑘(𝒄

∗; 𝒄0)
|

|

|

𝑺′𝒋′ = 𝟎,∀𝑘 ∶ 𝒋′ ≥ 𝟎, 𝑗′𝑅 = 1
}

. (32)

his problem is linear in the remaining optimisation variables, the
rreversible fluxes 𝒋′, which are all positive. The set of feasible solutions
s therefore a flux cone intersected with a single hyperplane 𝑗𝑅 = 1
nd the objective function is a linear function of the fluxes, since
𝑘 ∶ 1

𝑘𝑘𝑓𝑘(𝒄∗;𝒄𝟎)
= 𝑑𝑘 is constant. Therefore, according to the theory

bove (Fig. 2), the optimal solution has to be a (properly chosen
ultiple of an) elementary flux mode for any given 𝒄∗. Therefore, for

ll choices of 𝒄∗, including the optimal vector 𝒄𝑜 that minimises the
objective, the optimiser will be an EFM (Müller et al., 2014; Wortel
et al., 2014).

Thus, the growth rate of a cell is maximised by an EFM in the
case that a single total protein-expression constraint limits growth,
given the kinetics of all the growth-associated proteins encoded on its
genome (Müller et al., 2014; Wortel et al., 2014) and assuming a fixed
protein fraction of growth-unassociated proteins.

When several linear protein-concentration constraints are consid-
ered, it can be shown that the optimal solution can consist of a conical
combination of elementary flux modes (De Groot et al., 2019). The
number of EFMs appearing in the optimal conical combination is then
always smaller than or equal to the number of protein expression
constraints that are satisfied (as equalities) in the optimal state.

This theory can be used to rationalise the shift in metabolism from
pure respiratory growth to mixed respiratory and overflow-metabolism
growth above a critical growth rate, as observed for many microbial
species (De Groot et al., 2019). That protein expression constraints play
a role at this shift has been experimentally illustrated (Basan et al.,
2015), in which the overexpression of an unneeded protein in the
cytosol was shown to cause a lower critical and maximal growth rate,
in agreement with theoretical expectations. For a critical analysis of the
limitations of FBA for explaining the origins of overflow metabolism we
refer the reader to De Groot et al. (2020).

Thus, according to the theory laid out in this section (Müller et al.,
2014; Wortel et al., 2014; De Groot et al., 2019), the evolutionary
outcome of fitness maximisation under constant conditions of balanced
growth leads to a cell that exploits a minimal number of elementary flux
modes. The exploited number of EFMs equals the number of protein
concentration constraints that are ‘hit’ or, to put it differently, the
number of cellular compartments that are completely filled with needed
proteins and are, therefore, limiting the growth rate (Bruggeman et al.,
2020).

6 We sum again overall reactions, which are now all irreversible. Their
nzyme-kinetic rate equations have now all been split in a forward and
ackward rate.
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Fig. 4. S. cerevisiae exploits only a few EFMs when growing in a glucose-limited
hemostat. The theoretical expectation is that any microbe minimises the number
f exploited EFMs when it evolved to maximise its instantaneous growth rate under
onstant conditions. We do not know the evolutionary history of S. cerevisiae, but in
his figure we show that maximally 4 EFMs are needed to fit experimental data on
etabolic fluxes in a glucose-limited chemostat. This figure shows that experimental

lux data of a glucose-limited chemostat (Van Hoek et al., 1998) (as dots) can be
it (the lines) by a genome-scale model of S. cerevisiae (Lu et al., 2019) with either

or 4 EFMs, before and after the critical growth rate, respectively.The non-growth
ssociated maintenance supplied by the model, 0.7 mmolATP/(gDW h), was used. That
his microbe may indeed optimise protein expression to attain a maximal growth rate
s also indicated by protein expression data (Keren et al., 2016).

1. Experimental evidence of minimal usage of elementary flux
odes in a glucose-limited chemostat

Since we do not know how many protein expression constraints
imit the growth rate of a cell, one could argue that inferring elemen-
ary flux modes from experimental data is not a meaningful exercise:
nowing their number does not inform us about how close cells are
o an optimal state as long as we do not know the number of active
rotein expression constraints. This is particularly relevant when a cell
s expected to exploit dozens of EFMs. Knowing just their number then
oes not indicate much. This changes, however, when a cell expresses
nly a few EFMs (say 2–5), as then it is feasible to test experimentally
hether indeed as many protein expression constraints exist that limit

he observed growth rate and whether metabolic enzymes are indeed
xpressed at optimal concentrations. The experiment to be carried
ut is, for instance, the expression of an unneeded protein (i.e., a
rotein the overexpression of which has no direct effect on the specific
rowth for instance because it is catalytically inactive) in a cellular
ompartment that is believed to limit growth because it is full with
eeded proteins. Such an experiment has been carried out by Basan
t al. (2015). The protein constraints considered, for instance, derive
rom the limited protein-solvation capacity of all the protein-containing
ellular compartments such as the cytoplasm, periplasm, membranes,
nd organelles (Bruggeman et al., 2020). In particular for prokaryotes,
heir number is very small (<4). We therefore also expect that the
umber of EFMs used by microbes is correspondingly small.

In Fig. 4, the specific uptake rates of key nutrients and products
f S. cerevisiae grown in a glucose-limited chemostat (Van Hoek et al.,
998) are shown. Two growth rate regions are distinguished, each
haracterised by a linear relation between the uptake and production
11
ates and the growth rate: a respiratory region below a critical growth
ate and a respiratory-fermentative region above it. We note that the
lopes of these linear relations signify a fixed ratio of either an uptake
r a production rate over the growth rate. These ratios are ‘yields’
introduced above; the quantities predicted with FBA). These linear
egments suggest that the cell does not change its metabolic strategy
ver a range of growth rates, it only changes its protein expression and,
ossibly also, its metabolite concentrations to change growth rate and
aintain a balanced metabolism (Elsemman et al., 2022).

We used flux balance analysis and a genome-scale stoichiometric
odel of S. cerevisiae (Lu et al., 2019) to estimate the number of

lementary flux modes active in both regions. In the respiratory regions,
e minimised the glucose uptake rate for a given growth rate. We

ound that an acceptable fit can be found with just two EFMs. A single
FM, describing respiratory metabolism and cell growth, is mixed with
nother that takes care of the growth-rate unassociated maintenance
equirement. Above the critical growth rate, fermentation starts and
he fermentation flux increases with growth rate while respiratory flux
ecreases. In this region, we obtained an acceptable fit with four EFMs.
hese fits are shown as lines in Fig. 4.

Although we can confirm that the linear relations between uptake
nd production rates as function of growth rates can be shown to be
he result of 2 to 4 EFMs, this does not mean that we can always
redict which reactions are used intracellularly, as flux variability in
he optimal state is a general aspect of flux balance analysis compu-
ations (Mahadevan and Schilling, 2003). To address this one can for
nstance exploit whole-cell, protein-constraint models (Elsemman et al.,
022).

Thus, we conclude that a handful of EFMs can describe the metabolic
ehaviour of S. cerevisiae in a glucose-limited chemostat as a function
f growth rate. A more contemporary approach would be to consider
o-called ME models (O’Brien et al., 2013), which in addition to fluxes
lso predict the concentrations of the enzymes in the various EFMs and
onsider protein-expression constraints. They are also more predictive
n terms of the used internal fluxes. Also this more advanced approach
eads to the conclusion that only a handful EFMs can explain the
xperimental data (Elsemman et al., 2022).

That the flux data can be fitted with only a few EFMs (2 or 4)
s only indirect proof of the optimisation of metabolism for a maxi-
al growth rate. A more directly supporting piece of evidence – to
hich we return below – that protein expression maximises growth

ate comes from experimentally titrating about 80 different protein
evels in S. cerevisiae (Keren et al., 2016). The great majority (approx.
0%) of the proteins that were assayed were expressed at growth-
ate maximising concentrations. This behaviour was also found for PTS
roteins in Salmonella typhimurium (van der Vlag et al., 1994), citrate
ynthase (Walsh and Koshland Jr., 1985) and ATP synthase (Jensen
t al., 1993a,b, 1995; Rabbers and Bruggeman, 2022) in E. coli and
everal glycolysis enzymes in Lactococcus lactis (Solem et al., 2008,
003, 2010). On theoretical grounds it has also been suggested that
ibosomal proteins are expressed at levels that maximise growth rate
n E. coli (Bosdriesz et al., 2015; Scott et al., 2014). Thus, many
icrobes appear to express metabolic enzymes for maximising growth

ate. A theoretical study also indicates that this can be achieved by sur-
risingly simple genetic circuits, involving only a single transcription
actor (Planqué et al., 2018).

2. The optimal protein expression state of an elementary flux
ode

We need to consider briefly how the optimal metabolite and protein
oncentrations can be calculated for an elementary flux mode, in
rder to understand, in the two next sections, how individual enzymes
ontribute to growth-rate maximisation and to analyse the flux and
rowth-rate control coefficients of the proteins expressed in the optimal
tate.
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Consider again optimisation problem (31) and recall that an el-
ementary flux mode has a single independent flux so that the ratio
between any two of its flux values is constant and can be considered a
stoichiometric property of the EFM. Thus, we can relate all the flux
values in an EFM to a single (independent flux) value, e.g., to the
protein synthesis flux 𝑗𝑅(𝒄). We define these flux ratios as 𝛽𝑘 = 𝑗𝑘∕𝑗𝑅
so that the objective function (defined in (32)) can be written as (Noor
et al., 2016; Planqué et al., 2018),

(𝒄; 𝒄0) =
𝑅
∑

𝑘=1

𝛽𝑘
𝑘𝑘𝑓𝑘(𝒄; 𝒄0)

. (33)

he optimal concentration 𝒄𝑜 is the vector of metabolite concentrations
t which (𝒄; 𝒄0) is minimised. This objective corresponds to the min-
mal enzyme concentration that is needed to reach 𝑗𝑅(𝒄) = 1 and the
ptimisation variables are now only metabolite concentrations.7

From the optimal metabolite concentrations 𝒄𝑜, we can calculate the
optimal enzyme concentrations when we know the desired flux value
𝑗𝑅. (Alternatively, we can also determine the flux when we know the
total concentration of enzymes expressed in the EFM.) For example, in
case we know the desired value of the objective flux 𝑗𝑅(𝒄𝑜) = 𝑗𝑑𝑅 then
the optimal enzyme concentrations equal 𝑒𝑘 = 𝑗𝑑𝑅𝛽𝑘∕(𝑘𝑘𝑓𝑘(𝒄

𝑜; 𝒄0)).
We conclude that we can determine the optimal state of an EFM

when we have a complete kinetic model of it, containing all the
enzyme-kinetic rate equations, their parameter values and a character-
isation of the environmental conditions. When we lack the complete
kinetic information we can still perform insightful calculations, which is
what ME models achieve (O’Brien et al., 2013; Elsemman et al., 2022).

13. Kinetic interpretation of the optimal state of an EFM

An EFM in an optimal state has a maximised steady-state flux per
unit invested biosynthetic resources (total growth-associated protein
concentration) or, alternatively, it requires the smallest total concen-
tration of proteins to achieve a desired flux. What does this optimal
state of the system imply for the activity of the metabolic enzymes?

At the level of a single enzyme, the catalytic rate (flux) per unit in-
vested enzyme is maximised when the enzyme is completely saturated
with its substrate, so that 𝑓 (𝒄) in Eq. (22) approaches 1. This is however
not in agreement with the optimal state of any metabolic network,
because: i. a maximal substrate saturation can only be achieved when
the product concentrations are zero, implying that the next reaction
will carry no flux and thus violating the steady-state requirement of
the entire EFM, and ii. a high concentration of the substrate inhibits
the previous enzyme, for which it serves as a product, so the sub-
strate concentration cannot be excessively high. Thus, the fact that
the catalysis rate of an enzyme always depends on concentrations
of substrates, products and effectors implies that all those rates are
interdependent and that maximisation of a metabolic flux will result
in an optimal comprise between the extents of substrate activation and
product inhibition.

Minimisation of the objective function (33), with the metabolite
concentrations as optimisation variables, amounts to maximising a har-
monic mean of the saturation levels (each multiplied with a constant).8
The interpretation of each term in the sum (33),

𝜏𝑗 =
𝛽𝑘

𝑘𝑘𝑓𝑘(𝒄; 𝒄0)
, (34)

7 Minimising this objective function is a convex optimisation problem on
convex bounded domain in the logarithms of the metabolite concentra-

ions (Noor et al., 2016) (in fact, it is strictly convex in many cases (Planqué
t al., 2018)). The existence of a unique optimiser is thus guaranteed. When
e would know the exact convex combination of EFMs, e.g., from data, then

his result is still true (Klipp and Heinrich, 1999).
8 ∑ 1 ).
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For a vector 𝒙 of length 𝑛, the harmonic mean is defined as 𝑛∕( 𝑘 𝑥𝑘
s the expected duration of a catalytic event of reaction 𝑘. Hence,
the objective function measures the mean time for a molecule to pass
through all reactions in the EFM. A priori, we do not see how we can
say anything about the distribution, or the variance, of those values
in the optimal state, without having to make simplifying assumptions
regarding the network structure and the enzyme kinetics — as, for
instance, done in Klipp and Heinrich (1999).

It has been speculated that evolutionary optimisation may lead (un-
der particular conditions) to reactant concentrations that are close to
their 𝐾𝑀 constant (Cornish-Bowden, 1976). This appears, however, not
to be in agreement with data, obtained with E. coli, that indicates that
substrate concentrations exceed their affinity constant (𝐾𝑀 ) (Bennett
et al., 2009), indicating closer to optimal enzyme usage. Moreover,
since nearly all metabolic intermediates act as both substrates and
products (and therefore have multiple affinity constants), and occur
in reactions with varying equilibrium constants, we doubt whether
any fundamental statement can be made about the ratio of reactant
concentrations over affinity constants and enzyme saturation in optimal
conditions. We expect that this may be highly system-specific. At this
stage, we can only conclude that the average effective turnover time
(overall enzymes) is minimised by evolution in constant conditions.

14. Derivation of the flux control coefficients at the optimal state
of an elementary flux mode

The minimiser 𝒄𝑜 of the objective function (33) is a critical point,
and so satisfies

∀𝑐𝑗 ∈ 𝒄𝑜 ∶
𝜕(𝒄𝑜; 𝒄0)

𝜕𝑐𝑗
= 0. (35)

From this relation, we can derive two equations that concern the
control coefficients of enzymes in cells with a maximal growth rate.
These were previously derived by Klipp and Heinrich (1999), when
asking which relations hold when a given flux distribution is attained
at a minimal investment of enzymatic resources. They considered any
flux distribution, so any conical sum of EFMs. We only consider sin-
gle EFMs, because we know now that these are the solutions of the
maximisation of the flux per unit enzyme. By limiting ourselves to
EFMs, we can also extend a previous control analysis result derived for
linear pathways (Heinrich and Klipp, 1996) to EFMs that can contain
all the stoichiometric complexities of metabolic networks and contain
branches, cycles, and moiety conservation (such as the example shown
in Fig. 3).

We start from equation (35), which applies to a single EFM, and
rewrite it in a few steps (for notational simplification we define 𝑔𝑘(𝒄) =
𝑘𝑓𝑘(𝒄)) to obtain an expression first obtained by Klipp and Heinrich
1999) in the more general setting of any flux distribution,

=
𝜕(𝒄𝑜; 𝒄0)

𝜕𝑐𝑗
=

𝑅
∑

𝑘=1
𝛽𝑘

𝜕𝑔−1𝑘 (𝒄𝑜; 𝒄0)
𝜕𝑐𝑗

=
𝑅
∑

𝑘=1
𝛽𝑘

𝑒𝑘
𝑐𝑗

𝜕(𝑒𝑘𝑔𝑘)−1(𝒄𝑜; 𝒄0)
𝜕 ln 𝑐𝑗

=
𝑅
∑

𝑘=1
𝛽𝑘

𝑒𝑘
𝑐𝑗

𝑗−1𝑘

𝜕 ln 𝑗−1𝑘 (𝒄𝑜; 𝒄0)
𝜕 ln 𝑐𝑗

= −
𝑅
∑

𝑘=1
𝛽𝑘

𝑒𝑘
𝑐𝑗

𝑗−1𝑘
𝜕 ln 𝑗𝑘(𝒄𝑜; 𝒄0)

𝜕 ln 𝑐𝑗

= − 1
𝑐𝑗𝑗𝑅

𝑅
∑

𝑘=1
𝑒𝑘

𝜕 ln 𝑗𝑘(𝒄𝑜; 𝒄0)
𝜕 ln 𝑐𝑗

. (36)

Since the partial derivative is taken at fixed concentrations of all other
metabolites, we deduce that

𝜕 ln 𝑗 ∕ ln 𝑐 = 𝜕 ln 𝑣 ∕ ln 𝑐 = 𝜖𝑗𝑘
𝑘 𝑗 𝑘 𝑗 𝑐𝑗
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and therefore
𝑅
∑

𝑘=1
𝑒𝑘𝜖

𝑣𝑘
𝑐𝑗 = 0. (37)

hus, the last equation holds in the optimal state of an EFM, when it
as achieved a maximal flux per unit protein investment.

We know from the flux control connectivity theorem of metabolic
ontrol analysis that the following relationship holds in all (locally
table) steady states (Reder, 1988):
𝑅
∑

=1
𝐶𝑗
𝑘𝜖

𝑣𝑘
𝑐𝑗 = 0, (38)

ith 𝐶𝑗
𝑘 = 𝑑 ln 𝑗

𝑑 ln 𝑒𝑘
as the flux control coefficient of reaction 𝑘 on the

steady-state flux 𝑗. Since we are considering an EFM there is only one
independent flux, so we can choose any flux of the EFM as independent.
(Therefore, the flux control coefficient of enzyme 𝑖 on flux 1 is the same
as its control of flux 2, 3, etc.) In our context, the flux we consider as
independent is the protein synthesis rate 𝑗𝑅.

The summation theorem of flux control coefficients (25) specifies
that
𝑅
∑

𝑘=1
𝐶𝑗
𝑘 = 1. (39)

From the last three equations, we deduce that in the optimal state of
an EFM the flux control coefficients of enzymes equal their protein
concentration fraction, i.e.,
𝑜𝐶𝑗

𝑘 =
𝑒𝑘
𝑒𝑇

. (40)

An alternative derivation of (40) can be found in a footnote.9 In the
ppendix, we revisit the analysis of Burns and Kacser on flux control
n linear pathways at a state of maximal flux per unit invested protein,
hich is remarkably elegant.

We note that (40) was first derived by Heinrich and Klipp (1996),
or linear metabolic pathways (using the Lagrange multiplier method
or optimisation under constraints). The problem with that approach
owever is that it is unclear under which conditions it precisely applies;
he ‘Lagrange multiplier method’ does for instance not apply when
ore than one independent flux exists in the metabolic network.

It is important to realise that we divided by 𝑒𝑇 in (40) – the total
nzymatic resource available for the EFM – and not by 𝑝𝑇 = 𝑒𝑇 + 𝑝𝑁𝐺.
hen we consider the total protein concentration of a cell then the

ontrol of a metabolic protein on the metabolic flux through an EFM
n an optimal state equals

𝐶𝑗
𝑘 =

𝑒𝑘
𝑒𝑇

=
𝑒𝑘
𝑝𝑇

1
1 − 𝜙𝑁𝐺

. (41)

he quantity 𝑒𝑘∕𝑝𝑇 is the protein-concentration fraction of protein 𝑘.
elow, we will analyse published proteomics data from this control
erspective.

In the context of growth-rate maximisation with the protein synthe-
is rate considered as the independent flux the last expression changes
nto

𝐶𝑗𝑅
𝑘 =

𝑒𝑘
𝑒𝑇

=
𝑒𝑘
𝑝𝑇

1
1 − 𝜙𝑁𝐺

. (42)

9 Let 𝑞(𝒆) = 𝑗(𝒆)∕𝑒𝑇 = 𝑗(𝒆)∕
∑𝑛

𝑘=1 𝑒𝑘 be the specific flux. In an EFM, all
eactions are essential to sustain a flux. Hence 𝑗(𝒆) = 0 if 𝑒𝑘 = 0 for at least

one 𝑒𝑘. Therefore, 𝑞(𝒆) can only have an interior maximum, i.e., a point 𝒆 > 𝟎
where 𝜕𝑞

𝜕𝑒𝑘
= 0 for all 𝑘 = 1,… , 𝑛. At such a point,

=
𝜕𝑞(𝒆)
𝜕𝑒𝑘

=
𝑒𝑇

𝜕𝑗
𝜕𝑒𝑘

− 𝑗(𝒆)

𝑒2𝑇
o that
𝜕𝑗
𝜕𝑒𝑘

=
𝑗
𝑒𝑇

⟺
𝑒𝑘
𝑗

𝜕𝑗
𝜕𝑒𝑘

=
𝑒𝑘
𝑒𝑇

.

13
Thus, when we consider the maximisation of the growth rate at a
fixed growth-unassociated protein fraction 𝜙𝑁𝐺 then we obtain the
last expression at the optimal state. We note that 𝑒𝑘∕𝑒𝑇 also equals
the protein-number fraction, 𝑛𝑘∕

∑

𝑗∈𝐺 𝑛𝑗 (with 𝐺 as the set of growth-
associated proteins and 𝑒𝑗 = 𝑛𝑗∕𝑣 with 𝑛𝑗 as the number of proteins
𝑗 and 𝑣 as the volume of the average cell). This means that we can
estimate the flux control coefficients on the protein synthesis rate from
proteomics data, which we do below.

15. Derivation of the growth-rate control coefficients at the opti-
mal state of a growth-supporting elementary flux mode

In Eq. (13) we deduced that the specific growth rate of a cell equals
its protein synthesis rate divided by its total protein concentration,
i.e., 𝑗𝑅∕𝑝𝑇 . This implies that the growth rate control coefficients of
enzymes are related to their control coefficients on the protein synthesis
rate and their protein fraction (see also footnote 9),

𝐶𝜇
𝑘 =

𝑑 ln𝜇
𝑑 ln 𝑒𝑘

= 𝐶𝑗𝑅
𝑘 −

𝑒𝑘
𝑝𝑇

= 𝐶𝑗𝑅
𝑘 −

𝑒𝑘
𝑒𝑇

𝑒𝑇
𝑝𝑇

. (43)

This equation shows that all proteins without flux control on the
protein synthesis rate have a negative growth rate control coefficient
equal to minus their protein fraction. Lowering their concentration
thus enhances the flux. These proteins are therefore a burden to the
cell (Snoep et al., 1995).

At the optimal state of an EFM, we deduced above (Eq. (42)) that
𝑜𝐶𝑗𝑅

𝑘 = 𝑒𝑘
𝑒𝑇

. This means that when 𝜇 is maximal, given a fixed growth-
unassociated protein fraction 𝜙𝑁𝐺, that 𝑜𝐶𝑗𝑅∕𝑒𝑇

𝑘 = 0, but 𝑜𝐶𝜇
𝑘 ≠ 0, since

𝐶𝜇
𝑘 =

𝑒𝑘
𝑒𝑇

(

1 −
𝑒𝑇
𝑝𝑇

)

=
𝑒𝑘
𝑝𝑇

𝜙𝑁𝐺
1 − 𝜙𝑁𝐺

> 0, (44)

indicating that the growth-rate control coefficients are zero when the
cell does not express any proteins not associated to growth in the
optimal state. (Growth-unassociated proteins we defined above as pro-
teins that do not catalyse any of the reactions in the EFM(-s) making
all the biosynthetic components and free energy carriers of the cell
from extracellular nutrients.) This happens when 𝜙𝑁𝐺 = 0, a scenario
that can be most certainly excluded as cells do also express proteins
that carry different functions than catalytic functions in the growth-
supporting EFM such as structural proteins (H-NS, FtsZ), transcription
factors, flagellar proteins, etc..

16. Summation theorems of flux and growth-rate control coeffi-
cients

So far, we considered two kinds of protein pools: a growth-associated
protein pool of enzymes active in the growth-associated metabolic
network (catabolism and anabolism; an EFM), responsible for making
all the cellular components, and another pool of proteins, which are
not associated to that EFM and carry out other growth-unassociated
cellular functions. Since these different types of proteins have different
control properties on metabolic flux and growth rate, we derive the
summation theorems of control coefficients by summing over all the
proteins in the cell, pool by pool.

First we show that the flux control coefficient in the optimal state
sum to 1 as they have to:
∑

𝑗

𝑜𝐶𝐽
𝑗 =

∑

𝑘∈𝐺

𝑜𝐶𝐽
𝑘 +

∑

𝑙∈𝑁𝐺

𝑜𝐶𝐽
𝑙

=
∑

𝑘∈𝐺

𝑒𝑗
𝑒𝑇

+
∑

𝑙∈𝑁𝐺
0 = 1. (45)

he growth-rate control coefficients sum to 0 (in the optimal and any
on-optimal state),

𝐶𝜇
𝑗 =

∑

𝐶𝜇
𝑘 +

∑

𝐶𝜇
𝑙

𝑗 𝑘∈𝐺 𝑙∈𝑁𝐺
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=
∑

𝑘∈𝐺

(

𝐶𝑗𝑅
𝑘 −

𝑒𝑘
𝑝𝑇

)

+
∑

𝑙∈𝑁𝐺
−
𝑝𝑙
𝑝𝑇

=
∑

𝑘∈𝐺
𝐶𝑗𝑅
𝑘 −

∑

𝑘∈𝐺

𝑒𝑘
𝑝𝑇

− 𝜙𝑁𝐺

= 1 − 𝜙𝐺 − 𝜙𝑁𝐺

= 0. (46)

Thus, the growth-unassociated proteins each have a growth rate control
coefficient that equals minus their protein fraction (since they increase
𝑝𝑇 without affecting the protein synthesis rate).

Note that we took sums here also of proteins that do not have a cat-
alytic activity (unlike a metabolic enzyme). Such growth-unassociated
proteins therefore do not affect metabolic flux when changed in concen-
tration but they do affect the specific growth rate via its denominator
𝑝𝑇 . We note that we deviate here from classical metabolic control
analysis which generally does not consider control of non-catalytic
proteins.

The last summation theorem was to be expected, of course: since
the flux and the total protein concentration are each 1-homogeneous
in protein concentrations, any specific flux 𝑗∕𝑝𝑇 such as the growth
ate 𝜇 = 𝑗𝑅∕𝑝𝑇 is 0-homogeneous,

(𝜆𝑝𝑇 ) = 𝜆0𝜇(𝑝𝑇 ), for 𝜆 > 0, (47)

o its control coefficients should add to 0, as explained in Section 9. A
ell therefore does not grow faster when it has a higher total protein
oncentration as it also needs to make all of them.

7. Interpreting optimal flux control coefficients

The expressions for the optimal flux control coefficient can be
urther interpreted, using equations we have already derived.

First, we can exploit the general enzymatic rate equation 𝑣𝑘 =
𝑘𝑒𝑘𝑓𝑘(𝒄) (22) and the fact that an EFM has a single independent flux
o rewrite the metabolic protein fraction as

𝐶𝑗
𝑘 =

𝑒𝑘
𝑒𝑇

=

𝑣𝑘
𝑘𝑘𝑓𝑘(𝒄𝑜)

∑

𝑗
𝑣𝑗

𝑘𝑗𝑓𝑗 (𝒄𝑜)

=

𝛽𝑘
𝑘𝑘𝑓𝑘(𝒄𝑜)

∑

𝑗
𝛽𝑗

𝑘𝑗𝑓𝑗 (𝒄𝑜)

=
𝜏𝑜𝑘

∑

𝑗 𝜏
𝑜
𝑗
. (48)

The optimal flux control coefficient is now expressed in terms of the
optimal effective turnover times of all the enzymes 𝜏𝑜𝑘 = 𝛽𝑘

𝑘𝑘𝑓𝑘(𝒄𝑜)
. This

ast equation indicates that the flux control coefficient of an enzyme,
ay on the protein synthesis flux 𝑗𝑅, equals the time that this enzyme
eeds to convert its substrate molecule(-s) into product molecule(-s)
note the role of 𝛽 and 𝑓 (𝒄) here) divided by the total time needed to
un all enzymatic reactions once.

The specific growth rate can also be written in terms of the turnover
ime (starting from Eq. (13) and using a part of the previous derivation),

=
𝑗𝑅
𝑒𝑇

(1 − 𝜙𝑁𝐺) =
1

∑

𝑗
𝛽𝑗

𝑘𝑗𝑓𝑗 (𝒄)

(1 − 𝜙𝑁𝐺) =
1

∑

𝑗 𝜏𝑗
(1 − 𝜙𝑁𝐺).

Therefore, maximisation of specific growth rate can therefore also be
seen as an optimal scheduling task, which was realised earlier by
Pugatch (Pugatch, 2015).

Secondly, we can use the steady-state relation between the rates of
translation and dilution of a protein to rewrite the optimal flux control
coefficient expression in terms of its protein fraction. Recall first that

0 = 𝑝̇𝑘 = 𝛼𝑘𝑗𝑅(𝒄) − 𝜇𝑝𝑘.

Since 𝜇 = 𝑗𝑅(𝒄)∕𝑝𝑇 , this becomes

0 = 𝜇(𝛼𝑘𝑝𝑇 − 𝑝𝑘)

so that 𝛼𝑘 = 𝑝𝑘∕𝑝𝑇 in steady state. Hence, the fraction of ribosomes
translating growth-supporting and non-growth supporting proteins, 𝛼
14

𝐺

and 𝛼𝑁𝐺, are equal to 𝜙𝐺 and 𝜙𝑁𝐺, respectively,

𝛼𝐺 =
∑

𝑘∈𝐺
𝛼𝑘 =

∑

𝑘∈𝑁
𝑝𝑘∕𝑝𝑇 = 𝜙𝐺 ,

𝛼𝑁𝐺 =
∑

𝑘∈𝑁𝐺
𝛼𝑘 =

∑

𝑘∈𝑁𝐺
𝑝𝑘∕𝑝𝑇 = 𝜙𝑁𝐺 .

In terms of these quantities,

𝑜𝐶𝐽
𝑗 =

𝑒𝑗
𝑝𝑇

1
1 − 𝜙𝑁𝐺

=
𝛼𝑗

1 − 𝜙𝑁𝐺
=

𝛼𝑗
𝛼𝐺

. (49)

This relation shows that the flux control coefficients of enzymes can
be inferred from experimental ribosome profiling data, in addition to
number fraction data of proteomics (assuming the cell is optimal and
uses one EFM).

18. Experimental evidence of optimal expression of metabolic en-
zymes and the fitness potential of an enzyme expressed in terms
of control coefficients

Whether cells express metabolic enzymes to growth-rate maximising
levels can be experimentally verified by titrating the protein con-
centrations in a mutant strain, with for instance an IPTG-titratable
promoter (Jensen et al., 1993c; Walsh and Koshland Jr., 1985; Dekel
and Alon, 2005; Keren et al., 2016; Rabbers and Bruggeman, 2022).
A comparison of the growth rate of the wild type with the maximal
growth rate obtained in the titration experiment then indicates whether
the wild type displays an optimal concentration of the protein under
investigation. Such studies have been done for metabolic enzymes in E.
coli, L. lactis, S. typhimurium and S. cerevisiae and these nearly always
show optimal expression (Fig. 5) (Jensen et al., 1993a,b, 1995; Keren
et al., 2016; Rabbers and Bruggeman, 2022; Solem et al., 2008, 2003,
2010; van der Vlag et al., 1994; Walsh and Koshland Jr., 1985; Dekel
and Alon, 2005). We note that suboptimal preparatory protein overex-
pression also occurs (Grigaitis and Teusink, 2022; Berney et al., 2006;
Ihssen and Egli, 2004, 2005; Mashego et al., 2005; Mori et al., 2017),
but predominantly at nutrient-limited conditions. All the experimental
evidence of optimal protein expression were however obtained at nu-
trient excess, when protein overexpression is indeed less (O’Brien et al.,
2016). It is currently not known how the specific growth rate depends
on the expression level of a needed protein under nutrient-limited
conditions, for instance, achieved in a chemostat.

How can protein-expression-optimality studies be viewed in the
light of metabolic control coefficients? What we have concluded so far
is that the control coefficient of an enzyme on the protein synthesis
flux equals its protein fraction 𝑒𝑘∕𝑒𝑇 (Eq. (40)) under optimality con-
ditions (assuming a fixed growth-unassociated protein fraction), while
its growth rate control coefficient is then unequal to zero (Eq. (44); it
only equals zero when 𝑒𝑇 = 𝑝𝑇 ). But are these results not contradictory
to the plots shown in Fig. 5 that show a close-to-zero slope at the point
of optimality? To understand this, we have to define a new type of
MCA sensitivity coefficient that considers that increases in a (titrated)
enzyme concentration occur at the expense of a reduction in concentra-
tion of other enzymes — since they compete for biosynthetic resources.
So, we need to define a sensitivity coefficient under a constraint of a
fixed total protein concentration (Berkhout et al., 2013); one that has
not been considered before in MCA.

Consider the scenario that an experimentalist titrates a protein 𝑖,
using, for instance, an IPTG-titratable promoter (Jensen et al., 1993c),
to some specific concentration 𝑒𝑖 and that the cell then allocates the
remaining resources 𝑒𝑇 − 𝑒𝑖 to optimally express the remaining growth-
associated enzymes to maximise the growth rate (assuming again that
𝑝𝑇 and 𝜙𝑁𝐺 are fixed). This is one way to interpret the experiments
shown in Fig. 5. Under these conditions, the normalised slopes in these
figures can be shown to equal (see Appendix)

𝜇
𝑖 (𝑒𝑖) =

𝑑 ln𝜇(𝑒𝑖)
𝑑 ln 𝑒

=
𝐶𝑗𝑅
𝑒𝑖 (𝑒𝑖) −

𝑒𝑖
𝑒𝑇

1 − 𝑒𝑖
. (50)
𝑖 𝑒𝑇
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Fig. 5. Examples of optimal, growth-rate maximising expression of different
metabolic enzymes across three different microbial species. Several examples
of optimal expression enzymes are shown: citrate synthase in E. coli (Walsh and
Koshland Jr., 1985) (A.), ATP synthase in E. coli (Jensen et al., 1993a,b, 1995) (B.),
C. PTS IIA𝐺𝐿𝐶 in S. typhimurium (van der Vlag et al., 1994) (C.), several glycolytic
enzymes in L. lactis (Solem et al., 2008, 2003, 2010) (D.), and ATP synthase in E. coli
across 27 conditions (Rabbers and Bruggeman, 2022) (E.). Four of the 27 conditions
shown in E. had a deviation from optimality of more than 10%.

(For clarity we indicate the functional dependencies on the concentra-
tion 𝑒𝑖.) When the protein concentration is below its optimal level, at
which the growth rate is maximal, 𝐶𝑗𝑅

𝑒𝑖 −
𝑒𝑖
𝑒𝑇

> 0, and above it 𝐶𝑗𝑅
𝑒𝑖 −

𝑒𝑖
𝑒𝑇

<

0. At the optimal level, we obtain 𝑜𝐶𝑗𝑅
𝑒𝑖 =

𝑒𝑜𝑖
𝑒𝑇

and 𝜇
𝑖 (𝑒

𝑜
𝑖 ) = 0, which is in

agreement with earlier findings. Note also that generally, 𝑒𝑖
𝑒𝑇

≪ 1 and
therefore 𝜇

𝑖 (𝑒𝑖) ≈ 𝐶𝑗𝑅
𝑒𝑖 (𝑒𝑖)−

𝑒𝑖
𝑒𝑇

, which agrees with the earlier conclusion
that, at fixed 𝜙𝑁𝐺, optimisation of growth rate amounts to optimisation
of 𝑗𝑅∕𝑒𝑇 .

One can think of 𝜇
𝑖 (𝑒𝑖) as the ‘fitness potential’ of an enzyme. If a

cell aims to optimise its growth rate by optimal allocation of resources
then 𝜇

𝑖 (𝑒𝑖) indicates the return of investment when the cell increases
𝑒 → 𝑒 + 𝛿𝑒 by gene expression regulation.
15

𝑖 𝑖 𝑖
Eq. (50) indicates that two enzymes each with the same absolute
distance to optimality 𝐶𝑗𝑅

𝑒𝑖 (𝑒𝑖)−
𝑒𝑖
𝑒𝑇

differ in their fitness potential when
they are expressed at different relative abundances. The one with the
highest relatively abundance has the highest fitness potential. This
indicates that abundant enzymes can be expected to be more tightly
controlled in their expression level then low abundance enzymes –
because suboptimal expression of abundant enzymes is a significant
waste of resources.

19. Estimating growth-rate control coefficient from a comprehen-
sive proteomics dataset reporting protein-number fraction data

So far, we have considered the optimal expression of all the growth-
associated proteins that together catalyse the reaction in the optimal
EFM that maximises the specific growth rate of the cell given a single
protein-expression constraint. Eq. (44) indicates that the optimal con-
trol coefficient of growth-associated protein (e.g., a metabolic enzyme)
on growth rate is proportional to its protein fraction within the EFM it
is part of. This result applies however to the case that the cell expresses
a single EFM in its optimal state and this is likely not always the case in
all growth conditions (e.g., Fig. 4). In the case where several EFMs are
active, the 𝑙th EFM gets a fraction of 𝑒𝑇 ,𝑙∕𝑒𝑇 of the growth-associated
protein pool and the optimal flux control coefficient of enzyme 𝑘 on
𝑗𝑅,𝑙 of EFM 𝑙 equals 𝑒𝑘,𝑙∕𝑒𝑇 ,𝑙. Assuming a fixed conical sum of EFMs,
the optimal control coefficient of enzyme 𝑘 on the biosynthetic flux 𝑗𝑅
can then be approximated10 by:

𝑑 ln 𝑗𝑅
𝑑 ln 𝑒𝑘

≈
∑

𝑙

𝜕 ln 𝑗𝑅
𝜕 ln 𝑗𝑅,𝑙

𝜕 ln 𝑗𝑅,𝑙
𝜕 ln 𝑒𝑘,𝑙

𝜕 ln 𝑒𝑘,𝑙
𝜕 ln 𝑒𝑘

=
∑

𝑙

𝜕 ln 𝑗𝑅
𝜕 ln 𝑗𝑅,𝑙

𝑒𝑘,𝑙
𝑒𝑇 ,𝑙

𝜕 ln 𝑒𝑘,𝑙
𝜕 ln 𝑒𝑘

=
∑

𝑙

𝑒𝑘,𝑙
𝑒𝑇 ,𝑙

=
𝑒𝑘
𝑒𝑇

∑

𝑙

𝑒𝑘,𝑙
𝑒𝑘

𝑒𝑇
𝑒𝑇 ,𝑙

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝛼

∝
𝑒𝑘
𝑒𝑇

where 𝑗𝑅 =
∑

𝑙 𝑗𝑅,𝑙, 𝑒𝑘 =
∑

𝑙 𝑒𝑘,𝑙, 𝑒𝑇 =
∑

𝑙 𝑒𝑇 ,𝑙 and 𝛼 as a proportionality
constant. Thus, the optimal control coefficient of enzyme 𝑘 on the
biosynthetic flux is proportional to its concentration fraction of the
growth-associated proteins. Its control coefficient on cellular growth
rate then becomes 𝑜𝐶𝜇

𝑘 ≈ 𝛼 𝑒𝑘
𝑒𝑇

− 𝑒𝑘
𝑝𝑇

= 𝑒𝑘
𝑝𝑇

(

𝛼 𝑝𝑇
𝑒𝑇

− 1
)

∝ 𝑒𝑘
𝑝𝑇

. Thus,
the growth-rate control coefficients of the growth-associated proteins
of a cell, using several EFMs in its state of maximal growth rate, is
approximately proportional to its protein concentration fraction and,
therefore also to its number fraction.

Fig. 6 shows experimental data of normalised protein expression, as
number fractions, in E. coli under a single condition. These numbers
are proportional to their growth-rate control coefficients, assuming
that the corresponding concentrations of the proteins are not too
far removed from optimal concentrations. Enzymes with high control
(>0.04) are found in the glucose uptake system (ptsH), glycolysis (D-
glyceraldehyde-3-phosphate dehydrogenase: gapA, enolase: eno), TCA
(isocitrate dehydrogenase: icd), amino acid metabolism ((cobalamin-
independent) methionine synthase: metE, cysteine synthase A: cysK,
ketol-acid reductoisomerase; ilvC, serine hydroxymethyltransferase:
glyA) and several ribosomal subunits. This indicates growth-rate con-
trol is likely distributed over a relatively small number of catabolic and
anabolic steps.

10 We write approximated here because since enzyme 𝑘 can be active in
different EFMs its optimal reactant concentrations may be different in each
EFM it participates in. Here we assumed that in all these EFMs, its reactant
concentration has the same optimal value.
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Fig. 6. Number fractions (proxies for 𝑒𝑗∕𝑝𝑇 ) of metabolic and biosynthetic pro-
teins in E. coli categorised according to their metabolic network or function. We
took the proteomics data from Mori et al. (2021) under the reference growth condition
(MOPS, glucose, NH4Cl) and selected the metabolic proteins of key metabolic pathways
(in addition to sigma factors and RNA polymerase, which are shown for reference). The
mean and standard deviation of all the plotted number fractions (273 in total) equal
1.47 × 10−3 and 2.14 × 10−3.

20. Closing remarks

Nowadays it is clear for system biologists and biophysicists: you
have to study the ‘whole’ to understand it (think of ‘omics’), the ‘whole’
can be more than the sum of its ‘parts’ (emergence is omnipresent in cell
biology), and the ‘parts’ should be understood it terms of the ‘whole’
(e.g., feedbacks responsible for cellular energy homoeostasis). This was
not the case when MCA arose (Kacser, 1986). Reductionistic concepts
such as ‘rate-limiting steps’ reigned and were impeding progress into
quantitative understanding of metabolic pathways in terms of enzyme
kinetics and their underlying genes.
16
MCA initiated quantitative studies on a particular type of bio-
chemical system, i.e., metabolic pathways, after enough fundamen-
tal understanding of free energy transduction and catalysis by en-
zymes was attained. MCA subsequently provided the understanding
that changes in system properties depend nonlinearly on (all) enzyme
concentrations and that regulation emerges from a subtle interplay
between pathway topology and enzyme kinetics. The pioneering papers
of Burns & Kacser and Heinrich & Rapoport had this as their main aim.
Afterwards the MCA community developed mathematical modelling
software (e.g., Jarnac by Herbert Sauro and Gepasi by Pedro Mendes
and Douglas Kell) for simulation and analysis of mathematical models
of biochemical systems. These developments eventually contributed to
the emergence of systems biology, about two decades ago (Kitano,
2002; Westerhoff and Palsson, 2004).

In addition to metabolic pathways, one can however define many
biochemical systems in cell biology: cooperative enzymes, motor pro-
teins, signalling networks, DNA replication and segregation, gene-
regulatory circuits, etc. These are all unintuitive nonlinear systems
giving rise to emergent behaviours that correspond to ‘tasks’ in the
living cell. Although this list is not endless, it is huge. We are therefore
also interested in principles that apply across a wide range of systems.
This is an approach that has been very successful in physics and has
been influential in systems biology and biophysics. We exploited many
principles throughout this review: the concept of fitness, the universal
rate equation, the stoichiometric matrix, the flux cone, elementary flux
modes, balanced growth, and the expression of growth rate in terms of
all enzyme activities in a cell, etc. Each of these are applicable across
living systems.

A clear strength of MCA has always been its applicability to all
enzymatic systems, regardless of the precise enzyme kinetics and sys-
tem structure (reaction stoichiometry and regulatory circuitry), via its
generally applicable definitions of elasticity and control coefficients
(and their products response coefficients) (Reder, 1988). A downside is,
however, that as long as the enzyme kinetics is not known, insightful
deductions can only be made of small systems, analytically-solvable
simplified cases, or from analysis of experimental data. And, although
kinetic models of metabolic and signalling systems can be made (Bakker
et al., 1997; Rohwer et al., 2000; Teusink et al., 2000; Bruggeman et al.,
2005; Hornberg et al., 2005) and subsequently analysed for control
features, they are very laborious to develop (enzyme by enzyme) and
often limited by parameter-identifiability problems. Thus, prediction of
elasticity and control coefficient values is hard. This, perhaps, may have
prevented widespread usage of MCA. In this review, we hope to have
shown that this limitation disappears when evolutionary optimality
of the growth rate is assumed, for which quite some experimental
data also exists. Some nuisances about this viewpoint can be found
in Bruggeman et al. (2023).

MCA can also be used to understand the design and function of
particular recurrent biochemical systems’ designs. Examples are flux
control by demand and homeostasis by negative feedback (Hofmeyr
and Cornish-Bowden, 2000), zero-order ultrasensitivity, sequestration
and sensitivity amplification in signalling circuits (Kholodenko et al.,
1997; Blüthgen et al., 2006; Bruggeman et al., 2002), hierarchical con-
trol and regulation of metabolism (ter Kuile and Westerhoff, 2001), and
moiety-conversed cycles in metabolic pathways (Hofmeyr et al., 1986).
In these cases, the elasticity and control coefficients consequences are
studied given a ‘functional specification’ of a system — for example, for
an ultrasensitive response of a signalling cascade it can then be shown
that the kinases and phosphatases have to operate in their zero-order
regime and require low enough 𝐾𝑀 ’s that allow for this (Kholodenko
et al., 1997; Blüthgen et al., 2006). Since we lack such insights for
whole cell metabolism, applications of MCA to whole cells are limited.
Thus, as long as we lack a principle that specifies a desired behaviour of
metabolism, given a design or functional requirement from the whole
cell level acting top down, we can only model metabolism in the cell

bottom up, using mathematical models in terms of the kinetics of the
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enzymes (Bakker et al., 1997; Rohwer et al., 2000; Teusink et al., 2000;
Bruggeman et al., 2005; Hornberg et al., 2005).

In this review, we hope to have shown that at least for those
microbial species that operate close-enough to a state of maximal
growth rate, such as E. coli and S. cerevisiae, sufficient theory has been
eveloped in the last few decades to obtain a near comprehensive
nderstanding of their metabolic stoichiometry, enzymatic activities
nd control features. This extremum principle has enabled predictions
f enzyme activities and protein concentrations at the whole cell level
ithout having to know all the kinetic details of the enzymes. Although
rowth-rate maximisation may not apply to all microbes or cancer cells,
search for an extremum principle that specifies their behaviour may

pen up opportunities for whole-cell physiology prediction and MCA —
hich may, for instance, for cancer cells contribute to the identification
f drug targets, such as enzymes controlling key cancer-cell functions.
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ppendix A. Derivation of the fitness potential

Consider the titration of a protein 𝑖 to a fixed concentration 𝑒𝑖 and
he strategy of the cell to subsequently optimally express all the other
nzymes, given the total enzyme concentration constraint 𝑒𝑇 −𝑒𝑖 (given
hat 𝑝𝑇 = 𝑒𝑇 + 𝑝𝑁𝐺). The change in the growth rate (𝜇 = 𝑗𝑅∕𝑝𝑇 ) then
quals

ln𝜇 =

(

𝜕 ln𝜇
𝜕 ln 𝑒𝑖

+
∑

𝑗≠𝑖

𝜕 ln𝜇
𝜕 ln 𝑒𝑗

𝜕 ln 𝑒𝑗
𝜕 ln 𝑒𝑖

)

𝑑 ln 𝑒𝑖.

We consider the following Lagrangian,

(𝐞) = 𝜇(𝐞) − 𝜆

(

∑

𝑗≠𝑖
𝑒𝑗 − (𝑒𝑇 − 𝑒𝑖)

)

.

Now

∀𝑗 ≠ 𝑖 ∶
𝜕𝜇
𝜕𝑒𝑗

= 𝜆 ⇒
𝜕 ln𝜇
𝜕 ln 𝑒𝑗

=
𝑒𝑗
𝜇
𝜆

rom the summation theorem of growth-rate control coefficients (over
nly the growth-associated enzymes), which sum to 1 − 𝑒𝑇 ∕𝑝𝑇 , we

deduce that,
∑

𝑗≠𝑖

𝜕 ln𝜇
𝜕 ln 𝑒𝑗

=
∑

𝑗≠𝑖

𝜕 ln 𝑗𝑅
𝜕 ln 𝑒𝑗

−
∑

𝑗≠𝑖

𝜕 ln 𝑝𝑇
𝜕 ln 𝑒𝑗

= 1 −
𝜕 ln 𝑗𝑅
𝜕 ln 𝑒𝑖

−
(

𝑒𝑇
𝑝𝑇

−
𝑒𝑖
𝑝𝑇

)

= 1 −
𝑒𝑇
𝑝𝑇

−
𝜕 ln𝜇
𝜕 ln 𝑒𝑖

.

lso given the above we deduce that

𝑗≠𝑖

𝜕 ln𝜇
𝜕 ln 𝑒𝑗

=
∑

𝑗≠𝑖

𝑒𝑗
𝜇
𝜆 = 𝜆

𝜇
(𝑒𝑇 − 𝑒𝑖).

When we combine the last two results we can determine 𝜆

𝜆 (𝑒𝑇 − 𝑒𝑖) = 1 −
𝑒𝑇 −

𝜕 ln𝜇
⇒ 𝜆 =

𝜇
(

1 − 𝑒𝑇
𝑝𝑇

− 𝜕 ln𝜇
𝜕 ln 𝑒𝑖

)

.
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𝜇 𝑝𝑇 𝜕 ln 𝑒𝑖 𝑒𝑇 − 𝑒𝑖
Now we return to the equation we started with and substitute our
results,

𝑑 ln𝜇 =

(

𝜕 ln𝜇
𝜕 ln 𝑒𝑖

+
∑

𝑗≠𝑖

𝜕 ln𝜇
𝜕 ln 𝑒𝑗

𝜕 ln 𝑒𝑗
𝜕 ln 𝑒𝑖

)

𝑑 ln 𝑒𝑖

=

(

𝜕 ln𝜇
𝜕 ln 𝑒𝑖

+
∑

𝑗≠𝑖

𝑒𝑗
𝜇
𝜆
𝜕 ln 𝑒𝑗
𝜕 ln 𝑒𝑖

)

𝑑 ln 𝑒𝑖

=

⎛

⎜

⎜

⎜

⎝

𝜕 ln𝜇
𝜕 ln 𝑒𝑖

+
∑

𝑗≠𝑖

𝑒𝑗
𝜇

𝜇
(

1 − 𝑒𝑇
𝑝𝑇

− 𝜕 ln𝜇
𝜕 ln 𝑒𝑖

)

𝑒𝑇 − 𝑒𝑖

𝜕 ln 𝑒𝑗
𝜕 ln 𝑒𝑖

⎞

⎟

⎟

⎟

⎠

𝑑 ln 𝑒𝑖

=
⎛

⎜

⎜

⎝

𝜕 ln𝜇
𝜕 ln 𝑒𝑖

+ 𝑒𝑖
1 − 𝑒𝑇

𝑝𝑇
− 𝜕 ln𝜇

𝜕 ln 𝑒𝑖
𝑒𝑇 − 𝑒𝑖

∑

𝑗≠𝑖

𝜕𝑒𝑗
𝜕𝑒𝑖

⎞

⎟

⎟

⎠

𝑑 ln 𝑒𝑖

=
⎛

⎜

⎜

⎝

𝜕 ln𝜇
𝜕 ln 𝑒𝑖

+ 𝑒𝑖
1 − 𝑒𝑇

𝑝𝑇
− 𝜕 ln𝜇

𝜕 ln 𝑒𝑖
𝑒𝑇 − 𝑒𝑖

𝜕(𝑒𝑇 − 𝑒𝑖)
𝜕𝑒𝑖

⎞

⎟

⎟

⎠

𝑑 ln 𝑒𝑖

=
⎛

⎜

⎜

⎝

𝜕 ln𝜇
𝜕 ln 𝑒𝑖

− 𝑒𝑖
1 − 𝑒𝑇

𝑝𝑇
− 𝜕 ln𝜇

𝜕 ln 𝑒𝑖
𝑒𝑇 − 𝑒𝑖

⎞

⎟

⎟

⎠

𝑑 ln 𝑒𝑖

=
⎛

⎜

⎜

⎝

𝜕 ln𝜇
𝜕 ln 𝑒𝑖

𝑒𝑇 − 𝜕 ln𝜇
𝜕 ln 𝑒𝑖

𝑒𝑖 − 𝑒𝑖 + 𝑒𝑖
𝑒𝑇
𝑝𝑇

+ 𝑒𝑖
𝜕 ln𝜇
𝜕 ln 𝑒𝑖

𝑒𝑇 − 𝑒𝑖

⎞

⎟

⎟

⎠

𝑑 ln 𝑒𝑖

=
⎛

⎜

⎜

⎝

𝜕 ln𝜇
𝜕 ln 𝑒𝑖

− 𝑒𝑖
𝑒𝑇

+ 𝑒𝑖
𝑒𝑇

𝑒𝑇
𝑝𝑇

1 − 𝑒𝑖
𝑒𝑇

⎞

⎟

⎟

⎠

𝑑 ln 𝑒𝑖

=
⎛

⎜

⎜

⎝

𝜕 ln 𝑗𝑅
𝜕 ln 𝑒𝑖

− 𝑒𝑖
𝑝𝑇

− 𝑒𝑖
𝑒𝑇

+ 𝑒𝑖
𝑝𝑇

1 − 𝑒𝑖
𝑒𝑇

⎞

⎟

⎟

⎠

𝑑 ln 𝑒𝑖

=
⎛

⎜

⎜

⎝

𝜕 ln 𝑗𝑅
𝜕 ln 𝑒𝑖

− 𝑒𝑖
𝑒𝑇

1 − 𝑒𝑖
𝑒𝑇

⎞

⎟

⎟

⎠

𝑑 ln 𝑒𝑖. (51)

Now if we consider the titration of an enzyme in the growth-
associated pool that has no flux control, then

𝑑 ln𝜇 =
− 𝑒𝑖

𝑒𝑇

1 − 𝑒𝑖
𝑒𝑇

1
𝑒𝑖
𝑑𝑒𝑖 ⇒ ∫

𝜇(𝑒′𝑖 )

𝜇(0)
𝑑 ln𝜇 = ∫

𝑒′𝑖

0

− 𝑒𝑖
𝑒𝑇

1 − 𝑒𝑖
𝑒𝑇

1
𝑒𝑖
𝑑𝑒𝑖, (52)

which leads to
𝜇(𝑒′𝑖)
𝜇(0)

= 1 −
𝑒′𝑖
𝑒𝑇

= 1 −
𝑝𝑇
𝑒𝑇

𝑒′𝑖
𝑝𝑇

, (53)

which is consistent with the other derivations.

Appendix B. Jim Burns’ and Henrik Kacser’s view on optimal
allocation of resources for the maximisation of growth rate

While writing this review, we read through the metabolic control
theory literature again. One classic piece is the thesis of Jim Burns who
co-authored the first paper on metabolic control theory with Henrik
Kacser (A LATEX version of the Thesis is available at https://github.com/
sauro/JumBurnsThesis). Surprisingly, this thesis contains a section on
ptimal metabolic control theory. In this section, we reproduce the
ain approach and their understanding of it in terms of evolution —

ince this thesis is not widely available. It is a great addition to the
elated work by Klipp and Heinrich.

Burns considered a simple two-step pathway at steady-state. He
hen described the following operational experiment of moving an 𝛥𝑒

amount of protein from one step to another. If the total amount of
enzyme is fixed and the distribution of amounts of the two enzymes
is optimal such that we are at maximum flux for a given total amount
of protein, then it must be true that 𝛿𝑒1 + 𝛿𝑒2 = 0 and importantly the
change in flux is zero. The latter condition is true because as the ratio

of enzymes is changed, the flux will increase above the optimum and

https://github.com/hsauro/JumBurnsThesis
https://github.com/hsauro/JumBurnsThesis
https://github.com/hsauro/JumBurnsThesis
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then decrease. At the maximum, the rate of change is zero; hence, any
change will result in no change in flux.

Guy Brown, in his 1990s paper (Brown, 1991), independently came
to the same conclusion. He described the concept better than Burns did
in his thesis, but the result is the same.

From Burns, at the optimal allocation, we can state that 𝛿𝑒1+𝛿𝑒2 = 0
nd 𝛿𝐽 = 0. Expressed using flux control coefficients, we can write:
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𝛿𝑒1
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+ 𝐶𝐽
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𝛿𝑒2
𝑒2

ut since 𝛿𝑒1 = −𝛿𝑒2, it must be the case that

= 𝐶𝐽
𝑒1
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which finally allowed Burns to state 𝑒1 ∶ 𝑒2 = 𝐶𝐽
𝐸1

∶ 𝐶𝐽
𝐸2

. Burns
also generalised to pathways of arbitrary size by considering pairs of
enzymes.

It is interesting to note that Waley in 1964 (Waley, 1964) published
a small note on multi-enzyme systems where he used Lagrange multi-
pliers to show that the optimal distribution of enzymes with a fixed
total amount was proportional to the square root of kinetic parameters
associated with each enzyme. For a system with simple mass-action
kinetics, Brown showed that the square terms were a simple ratio
of the forward and reverse rate constants. Burns also came to the
same conclusion in his thesis and generalised this result by assuming
the mass-action rate laws were modified to include the equilibrium
constant: 𝑣𝑖 = 𝑘𝑖𝑒𝑖(𝑆𝑖 − 𝑆𝑖+1∕𝐾𝑒𝑞,𝑖). In this situation, the flux through a
linear pathway has a simple form (when the last reaction is irreversible
and all 𝐾𝑒𝑞,𝑖 = 1)11:

𝐽 =
𝑆0

∑

𝑖
1

𝑘𝑖𝑒𝑖

.

Burns then went on to show that for a linear pathway, the ratio of
enzymes at the optimal state was given by:
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1
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rom the last equation he deduced that
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nd therefore
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such that
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≈ 𝜇.

hus, Burns found an optimal expression for enzyme concentrations
nd for the specific flux of a pathway in terms of its kinetic parameters,
iven a finite amount of total enzyme. He even argued that when
cell aims to maximise specific flux of a product when it has two

iosynthetic routes, by constrained optimisation of enzyme levels, the
ptimal choice is always to use one of them — akin to our EFM
rgument in the presence of a single constraint.

Thus, Burns & Kacser, the initiators of MCA and authors of its
ioneering work (Kacser and Burns, 1973), together with Heinrich &
apoport (Heinrich and Rapoport, 1974), were way ahead of their time.

t continually appears as if we are still catching up.

11 In addition to Burns’ thesis, you can also find this as a limiting case of the
erivations in Heinrich and Rapoport (1974) and Heinrich and Klipp (1996),
lipp and Heinrich (1999).
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