750 research outputs found

    Magnetooptical Study of Zeeman Effect in Mn modulation-doped InAs/InGaAs/InAlAs Quantum Well Structures

    Get PDF
    We report on a magneto-photoluminescence (PL) study of Mn modulation-doped InAs/InGaAs/InAlAs quantum wells. Two PL lines corresponding to the radiative recombination of photoelectrons with free and bound-on-Mn holes have been observed. In the presence of a magnetic field applied in the Faraday geometry both lines split into two circularly polarized components. While temperature and magnetic field dependences of the splitting are well described by the Brillouin function, providing an evidence for exchange interaction with spin polarized manganese ions, the value of the splitting exceeds the expected value of the giant Zeeman splitting by two orders of magnitude for a given Mn density. Possible reasons of this striking observation are discussed

    Analysis and Modification of Amorphous and Partially-Crystalline Thin Films

    Full text link
    Thin films of light atomic weight elements in amorphous, partially-crystalline, or crystalline forms have applications in a broad range of technologies. For example, amorphous tetrahedral carbon (a-tC) and polymeric thin films impact electronic materials technology as electron- and light-emitting device elements, respectively. A lack of crystallinity introduces complexity in the experimental and theoretical characterization of these materials but is not necessarily a limiting factor in their performance. While the growth process is clearly a major factor governing the physical properties of a film, interactions with the substrate are also important, so surface and interface analysis provides an important complement to bulk measurements. This paper focuses on several approaches in the characterization and modification of thin films made possible by recent experimental advances. The structural and electronic properties of two model systems are considered as examples: a-tC thin films grown by pulsed laser deposition (PLD) and polyaniline thin films grown by vapor deposition. First, scanning probe microscopies and X-ray scattering are used to investigate the structural aspects of a-tC films as a function of PLD growth conditions. The possible connection of nanoscale surface modification and characterization with electron emission properties will be discussed. Second, the results of inelastic scattering spectroscopy and other surface techniques will be discussed to obtain information on both interfacial aspects of the growth of polyaniline thin films and microscopic and macroscopic aspects of electrical conductivity upon doping. Comparisons will be made with other studies that address properties of analogous crystalline systems as appropriate. A brief assessment of the broader problem of analyzing these systems will be given

    Epidermal Growth Factor–PEG Functionalized PAMAM-Pentaethylenehexamine Dendron for Targeted Gene Delivery Produced by Click Chemistry

    Get PDF
    Aim of this study was the site-specific conjugation of an epidermal growth factor (EGF)-polyethylene glycol (PEG) chain by click chemistry onto a poly(amido amine) (PAMAM) dendron, as a key step toward defined multifunctional carriers for targeted gene delivery. For this purpose, at first propargyl amine cored PAMAM dendrons with ester ends were synthesized. The chain terminal ester groups were then modified by oligoamines with different secondary amino densities. The oligoamine-modified PAMAM dendrons were well biocompatible, as demonstrated in cytotoxicity assays. Among the different oligoamine-modified dendrons, PAMAM-pentaethylenehexamine (PEHA) dendron polyplexes displayed the best gene transfer ability. Conjugation of PAMAM-PEHA dendron with PEG spacer was conducted via click reaction, which was performed before amidation with PEHA. The resultant PEG-PAMAM-PEHA copolymer was then coupled with EGF ligand. pDNA transfections in HuH-7 hepatocellular carcinoma cells showed a 10-fold higher efficiency with the polyplexes containing conjugated EGF as compared to the ligand-free ones, demonstrating the concept of ligand targeting. Overall gene transfer efficiencies, however, were moderate, suggesting that additional measures for overcoming subsequent intracellular bottlenecks in delivery have to be taken

    Kapitel 27. Theorien des Wandels und der Gestaltung von Strukturen: Bereitstellungsperspektive

    Get PDF
    Die Bereitstellungsperspektive untersucht geeignete Strukturen klimafreundlichen Lebens ausgehend von Bereitstellungssystemen, die suffiziente und resiliente Praktiken und Lebensformen erleichtern und damit selbstverständlich machen. Sie ermöglicht eine ganzheitliche Sichtweise, um langfristige Klimawandelmitigation und -anpassung mit der kurzfristigen Sicherung der Grundversorgung und dem Schutz vor Naturgefahren zu verbinden

    Generalized Hamiltonian structures for Ermakov systems

    Full text link
    We construct Poisson structures for Ermakov systems, using the Ermakov invariant as the Hamiltonian. Two classes of Poisson structures are obtained, one of them degenerate, in which case we derive the Casimir functions. In some situations, the existence of Casimir functions can give rise to superintegrable Ermakov systems. Finally, we characterize the cases where linearization of the equations of motion is possible

    The ZEPLIN-III dark matter detector: instrument design, manufacture and commissioning

    Get PDF
    We present details of the technical design and manufacture of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase xenon detector which measures both the scintillation light and the ionisation charge generated in the liquid by interacting particles and radiation. The instrument design is driven by both the physics requirements and by the technology requirements surrounding the use of liquid xenon. These include considerations of key performance parameters, such as the efficiency of scintillation light collection, restrictions placed on the use of materials to control the inherent radioactivity levels, attainment of high vacuum levels and chemical contamination control. The successful solution has involved a number of novel design and manufacturing features which will be of specific use to future generations of direct dark matter search experiments as they struggle with similar and progressively more demanding requirements.Comment: 25 pages, 19 figures. Submitted to Astropart. Phys. Some figures down sampled to reduce siz

    Children's daily travel to school in Johannesburg-Soweto, South Africa: geography and school choice in the Birth to Twenty cohort study

    Get PDF
    This paper has two aims: to explore approaches to the measurement of children’s daily travel to school in a context of limited geospatial data availability, and to provide data regarding school choice and distance travelled to school in Soweto-Johannesburg, South Africa. The paper makes use of data from the Birth to Twenty cohort study (n=1428) to explore three different approaches to estimating school choice and travel to school. Firstly, straight-line distance between home and school is calculated. Secondly, census geography is used to determine whether a child's home and school fall in the same area. Thirdly, distance data are used to determine whether a child attends the nearest school. Each of these approaches highlights a different aspect of mobility, and all provide valuable data. Overall, primary school aged children in Soweto-Johannesburg are shown to be travelling substantial distances to school on a daily basis. Over a third travel more than 3km, one-way, to school, 60% attend schools outside of the suburb in which they live, and only 18% attend their nearest school. These data provide evidence for high levels of school choice in Johannesburg-Soweto, and that families and children are making substantial investments in pursuit of high quality educational opportunities. Additionally, these data suggest that two patterns of school choice are evident: one pattern involving travel of substantial distances and requiring a higher level of financial investment, and a second pattern, involving choice between more local schools, requiring less travel and a more limited financial investment

    Generation of entangled states of two atoms inside a leaky cavity

    Full text link
    An in-depth theoretical study is carried out to examine the quasi-deterministic entanglement of two atoms inside a leaky cavity. Two Λ\Lambda-type three-level atoms, initially in their ground states, may become maximally entangled through the interaction with a single photon. By working out an exact analytic solution, we show that the probability of success depends crucially on the spectral function of the injected photon. With a cavity photon, one can generate a maximally entangled state with a certain probability that is always less than 50%. However, for an injected photon with a narrower spectral width, this probability can be significantly increased. In particular, we discover situations in which entanglement can be achieved in a single trial with an almost unit probability
    corecore