1,892 research outputs found

    Comparison of numerical solution strategies for gravity field recovery from GOCE SGG observations implemented on a parallel platform

    Get PDF
    International audienceThe recovery of a full set of gravity field parameters from satellite gravity gradiometry (SGG) is a huge numerical and computational task. In practice, parallel computing has to be applied to estimate the more than 90 000 harmonic coefficients parameterizing the Earth?s gravity field up to a maximum spherical harmonic degree of 300. Three independent solution strategies, i.e. two iterative methods (preconditioned conjugate gradient method, semi-analytic approach) and a strict solver (Distributed Non-approximative Adjustment), which are operational on a parallel platform (?Graz Beowulf Cluster?), are assessed and compared both theoretically and on the basis of a realistic-as-possible numerical simulation, regarding the accuracy of the results, as well as the computational effort. Special concern is given to the correct treatment of the coloured noise characteristics of the gradiometer. The numerical simulations show that there are no significant discrepancies among the solutions of the three methods. The newly proposed Distributed Nonapproximative Adjustment approach, which is the only one of the three methods that solves the inverse problem in a strict sense, also turns out to be a feasible method for practical applications.Key words. Spherical harmonics ? satellite gravity gradiometry ? GOCE ? parallel computing ? Beowulf cluste

    Experimental Investigation of a Hall-Current Accelerator

    Get PDF
    The Hall-current accelerator is being investigated for use in the 1000-2000 sec. range of specific impulse. Three models of this thruster were tested. The first two models had three permanent magnets to supply the magnetic field and the third model had six magnets to supply the field. The third model thus had approximately twice the magnetic field of the first two. The first and second models differ only in the shape of the magnetic field. All other factors remained the same for the three models except for the anode-cathode distance, which was changed to allow for the three thrusters to have the same magnetic field integral between the anode and the cathode. These Hall thrusters were tested to determine the plasma properties, the beam characteristics, and the thruster characteristics. The thruster operated in three modes: (1) main cathode only, (2) main cathode with neutralizer cathode, and (3) neutralizer cathode only. The plasma properties were measured along an axial line, 1 mm inside the cathode radius, at a distance of 0.2 to 6.2 cm from the anode. Results show that the current used to heat the cathode produced nonuniformities in the magnetic field, hence also in the plasma properties. In a Hall thruster this general design appears to provide the most thrust when operated at a magnetic field less than the maximum value studied

    Substantiation data for hypersonic cruise vehicle wing structure evaluation - Volume 1, sections 1-10

    Get PDF
    Trajectory, load, aerodynamic heating, materials, structural, and thermal analyses for hypersonic cruise vehicle wing

    Farm debt and financial viability

    Get PDF
    New Zealand Society of Farm Management Conference proceedings 1971.This bulletin has been produced by the Department of Farm Management and Rural Valuation of Lincoln College in association with the New Zealand Society of Farm Management. It consists of papers given at the Society of Farm Management section of the Annual Conference of the New Zealand Institute of Agriculture Science held at Lincoln College in August 1971. Deepening financial problems in the Sheep Industry have focussed attention on the need for a fuller understanding of the nature of these problems, and the policy measures needed to meet them. These papers make a contribution to this understanding

    Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3

    Get PDF
    double Holliday junction (dHJ) is a central intermediate of homologous recombination that can be processed to yield crossover or non-crossover recombination products. To preserve genomic integrity, cells possess mechanisms to avoid crossing over. We show that Saccharomyces cerevisiae Sgs1 and Top3 proteins are sufficient to migrate and disentangle a dHJ to produce exclusively non-crossover recombination products, in a reaction termed "dissolution." We show that Rmi1 stimulates dHJ dissolution at low Sgs1-Top3 protein concentrations, although it has no effect on the initial rate of Holliday junction (HJ) migration. Rmi1 serves to stimulate DNA decatenation, removing the last linkages between the repaired and template DNA molecules. Dissolution of a dHJ is a highly efficient and concerted alternative to nucleolytic resolution that prevents crossing over of chromosomes during recombinational DNA repair in mitotic cells and thereby contributes to genomic integrity
    • 

    corecore