903 research outputs found

    Cooling and heating by adiabatic magnetization in the Ni50_{50}Mn34_{34}In16_{16} magnetic shape memory alloy

    Get PDF
    We report on measurements of the adiabatic temperature change in the inverse magnetocaloric Ni50_{50}Mn34_{34}In16_{16} alloy. It is shown that this alloy heats up with the application of a magnetic field around the Curie point due to the conventional magnetocaloric effect. In contrast, the inverse magnetocaloric effect associated with the martensitic transition results in the unusual decrease of temperature by adiabatic magnetization. We also provide magnetization and specific heat data which enable to compare the measured temperature changes to the values indirectly computed from thermodynamic relationships. Good agreement is obtained for the conventional effect at the second-order paramagnetic-ferromagnetic phase transition. However, at the first order structural transition the measured values at high fields are lower than the computed ones. Irreversible thermodynamics arguments are given to show that such a discrepancy is due to the irreversibility of the first-order martensitic transition.Comment: 5 pages, 4 figures. Accepted for publication in the Physical Review

    Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund. Copyright @ 2013 Pey et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. Results: We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. Conclusions: A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.Basque Governmen

    Lattice dynamics and phonon softening in Ni-Mn-Al Heusler alloys

    Get PDF
    Inelastic and elastic neutron scattering have been used to study a single crystal of the Ni54_{54}Mn23_{23}Al23_{23} Heusler alloy over a broad temperature range. The paper reports the first experimental determination of the low-lying phonon dispersion curves for this alloy system. We find that the frequencies of the TA2_2 modes are relatively low. This branch exhibits an anomaly (dip) at a wave number ξ0=1/3≈0.33\xi_{0} ={1/3}\approx 0.33, which softens with decreasing temperature. Associated with this anomalous dip at ξ0\xi_{0}, an elastic central peak scattering is also present. We have also observed satellites due to the magnetic ordering.Comment: 6 pages, 6 figures. Accepted for publication in the Physical Review

    Dispersal of larval and juvenile seabream: Implications for Mediterranean marine protected areas

    Get PDF
    In the marine context, information about dispersal is essential for the design of networks of marine protected areas (MPAs). Generally, most of the dispersal of demersal fishes is thought to be driven by the transport of eggs and larvae in currents, with the potential contribution of dispersal in later life stages relatively minimal.Using otolith chemistry analyses, we estimate dispersal patterns across a spatial scale of approximately 180. km at both propagule (i.e. eggs and larvae) and juvenile (i.e. between settlement and recruitment) stages of a Mediterranean coastal fishery species, the two-banded seabream Diplodus vulgaris. We detected three major natal sources of propagules replenishing local populations in the entire study area, suggesting that propagule dispersal distance extends to at least 90. km. For the juvenile stage, we detected dispersal of up to 165. km. Our work highlights the surprising and significant role of dispersal during the juvenile life stages as an important mechanism connecting populations. Such new insights are crucial for creating effective management strategies (e.g. MPAs and MPA networks) and to gain support from policymakers and stakeholders, highlighting that MPA benefits can extend well beyond MPA borders, and not only via dispersal of eggs and larvae, but also through movement by juveniles

    Acoustic emission across the magnetostructural transition of the giant magnetocaloric Gd5Si2Ge2 compound

    Get PDF
    We report on the existence of acoustic emission during the paramagnetic-monoclinic to ferromagnetic-orthorhombic magnetostructural phase transition in the giant magnetocaloric Gd5Si2Ge2 compound. The transition kinetics have been analyzed from the detected acoustic signals. It is shown that this transition proceeds by avalanches between metastable states.Comment: 5 pages, 4 figure

    Temperature and magnetic field dependences of the elastic constants of Ni-Mn-Al magnetic Heusler alloys

    Get PDF
    We report on measurements of the adiabatic second order elastic constants of the off-stoichiometric Ni54_{54}Mn23_{23}Al23_{23} single crystalline Heusler alloy. The variation in the temperature dependence of the elastic constants has been investigated across the magnetic transition and over a broad temperature range. Anomalies in the temperature behaviour of the elastic constants have been found in the vicinity of the magnetic phase transition. Measurements under applied magnetic field, both isothermal and variable temperature, show that the value of the elastic constants depends on magnetic order, thus giving evidence for magnetoelastic coupling in this alloy system.Comment: 7 pages, 5 figures. Accepted for publication in Physical the Review

    Patterns of variability in early life traits of a Mediterranean coastal fish

    Get PDF
    Spawning dates and pelagic larval duration (PLD) are early life traits (ELT) crucial for understanding life cycles, properly assessing patterns of connectivity and gathering indications about patchiness or homogeneity of larval pools. Considering that little attention has been paid to spatial variability in these traits, we investigated variability of ELT from the analysis of otolith microstructure in the common two-banded sea bream Diplodus vulgaris. In the southwestern Adriatic Sea, along ~200 km of coast (∼1° in latitude, 41.2° to 40.2°N), variability of ELT was assessed at multiple spatial scales. Overall, PLD (ranging from 25 to 61 d) and spawning dates (October 2009 to February 2010) showed significant variability at small scales (i.e. <6 km), but not at larger scales. These outcomes suggest patchiness of the larval pool at small spatial scales. Multiple causal processes underlying the observed variability are discussed, along with the need to properly consider spatial variability in ELT, for example when delineating patterns of connectivity. Copyright © 2013 Inter-Research

    Experimental evidence of accelerated seismic release without critical failure in acoustic emissions of compressed nanoporous materials

    Full text link
    The total energy of acoustic emission (AE) events in externally stressed materials diverges when approaching macroscopic failure. Numerical and conceptual models explain this accelerated seismic release (ASR) as the approach to a critical point that coincides with ultimate failure. Here, we report ASR during soft uniaxial compression of three silica-based (SiO2_2) nanoporous materials. Instead of a singular critical point, the distribution of AE energies is stationary and variations in the activity rate are sufficient to explain the presence of multiple periods of ASR leading to distinct brittle failure events. We propose that critical failure is suppressed in the AE statistics by dissipation and transient hardening. Some of the critical exponents estimated from the experiments are compatible with mean field models, while others are still open to interpretation in terms of the solution of frictional and fracture avalanche models.Comment: preprint, Main article: 7 pages, 3 figures. Supplementary material included in \anc folder: 6 pages, 3 figure

    Thermodynamics of Ferrotoroidic Materials: Toroidocaloric Effect

    Full text link
    The three primary ferroics, namely ferromagnets, ferroelectrics and ferroelastics exhibit corresponding large (or even giant) magnetocaloric,electrocaloric and elastocaloric effects when a phase transition is induced by the application of an appropriate external field. Recently the suite of primary ferroics has been extended to include ferrotoroidic materials in which there is an ordering of toroidic moments in the form of magnetic vortex-like structures, examples being LiCo(PO_4)_3 and Ba_2CoGe_2O_7. In the present work we formulate the thermodynamics of ferrotoroidic materials. Within a Landau free energy framework we calculate the toroidocaloric effect by quantifying isothermal entropy change (or adiabatic temperature change) in the presence of an applied toroidic field when usual magnetization and polarization may also be present simultaneously. We also obtain a nonlinear Clausius-Clapeyron relation for phase coexistence.Comment: 10 pages, 5 Figure
    • …
    corecore