329 research outputs found

    The effects of improving low dietary protein utilization on the proteome of lamb tissues

    Get PDF
    Cistus ladanifer L. is a common shrub endemic to the Mediterranean region with high levels of condensed tannins (CT). CT form complexes with dietary protein resisting microbial degradation in the rumen, which enhances dietary protein utilization in ruminant diets. The objective of this study was to evaluate the utilization of CT in the diet of lambs on the proteomes of muscle, hepatic and adipose tissues. Twenty-four Merino Branco ram lambs were randomly allocated to three treatments (n = 8): C – control (160 g crude protein (CP)) per kg DM, RP – reduced protein (120 g CP/kg DM); and RPCT – reduced protein (120 g CP/kg DM) treated with CT extract. At the end of the trial, lambs were slaughtered and the longissimus lumborum muscle, hepatic and peri-renal adipose tissues sampled. A two-way approach was used for proteomic analysis: 2D-DIGE and nanoLC-MS. In the muscle, C lambs had lower abundance proteins that partake in the glycolysis pathway than the lambs of other treatments. Control lambs had lower abundance of Fe-carrying proteins in the hepatic tissue than RP and RPCT lambs. The latter lambs had highest abundance of hepatic flavin reductase. In the adipose tissue, C lambs had lowest abundance of fatty-acid synthaseinfo:eu-repo/semantics/acceptedVersio

    A Fusarium graminearum strain-comparative proteomic approach identifies regulatory changes triggered by agmatine

    Get PDF
    Plant pathogens face different environmental clues depending on the stage of the infection cycle they are in. Fusarium graminearum infects small grain cereals producing trichothecenes type B (TB) that act as virulence factor in the interaction with the plant and have important food safety implications. This study addresses at the proteomic level the effect of an environmental stimulus (such as the presence of a polyamine like agmatine) possibly encountered by the fungus when it is already within the plant. Because biological diversity affects the proteome significantly, a multistrain (n = 3) comparative approach was used to identify consistent effects caused on the fungus by the nitrogen source (agmatine or glutamic acid). Proteomics analyses were performed by the use of 2D-DIGE. Results showed that agmatine augmented TB production but not equally in all strains. The polyamine reshaped drastically the proteome of the fungus activating specific pathways linked to the translational control within the cell. Chromatin restructuring, ribosomal regulations, protein and mRNA processing enzymes were modulated by the agmatine stimulus as well as metabolic, structural and virulence-related proteins, suggesting the need to reshape specifically the fungal cell for TB production, a key step for the pathogen spread within the spike. Biological significance: Induction of toxin synthesis by plant compounds plays a crucial role in toxin contamination of food and feed, in particular trichothecenes type B produced mainly by F. graminearum on wheat. This work describes the level of diversity of 3 strains facing 2 toxin inducing plant derived compounds. This knowledge is of use for the research community on toxigenic Fusarium strains in cereals for understanding the role of fungal diversity in toxin inducibility. This work also suggests that environmental clues that can be found within the plant during infection (like different nitrogen compounds) are crucial stimuli for reshaping the proteome profile and consequently the specialization profiling of the fungus, ultimately leading to very different toxin contamination levels in the plant

    PhOTO Zebrafish: A Transgenic Resource for In Vivo Lineage Tracing during Development and Regeneration

    Get PDF
    Background: Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo. Methodology: PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ~100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin. Conclusions/Significance: PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior

    Multi-omics comparison of malignant and normal uveal melanocytes reveals molecular features of uveal melanoma.

    Get PDF
    Uveal melanoma (UM) is a rare cancer resulting from the transformation of melanocytes in the uveal tract. Integrative analysis has identified four molecular and clinical subsets of UM. To improve our molecular understanding of UM, we performed extensive multi-omics characterization comparing two aggressive UM patient-derived xenograft models with normal choroidal melanocytes, including DNA optical mapping, specific histone modifications, and DNA topology analysis using Hi-C. Our gene expression and cytogenetic analyses suggest that genomic instability is a hallmark of UM. We also identified a recurrent deletion in the BAP1 promoter resulting in loss of expression and associated with high risk of metastases in UM patients. Hi-C revealed chromatin topology changes associated with the upregulation of PRAME, an independent prognostic biomarker in UM, and a potential therapeutic target. Our findings illustrate how multi-omics approaches can improve our understanding of tumorigenesis and reveal two distinct mechanisms of gene expression dysregulation in UM

    Deep and fast live imaging with two-photon scanned light-sheet microscopy

    Get PDF
    We implemented two-photon scanned light-sheet microscopy, combining nonlinear excitation with orthogonal illumination of light-sheet microscopy, and showed its excellent performance for in vivo, cellular-resolution, three-dimensional imaging of large biological samples. Live imaging of fruit fly and zebrafish embryos confirmed that the technique can be used to image up to twice deeper than with one-photon light-sheet microscopy and more than ten times faster than with point-scanning two-photon microscopy without compromising normal biology

    Typification and authorship of Drosera intermedia (Droseraceae)

    Get PDF
    Drosera intermedia is lectotypified with the herbarium specimen on which the type drawing in the 1798 protologue was based. The collection history of the specimen, the history of the botanical drawing as original material, and the correct nomenclatural author and publication date of the name are presented based on historical notes and literature. Additionally, the global distribution of the species is given, including the first record from Africa

    Multimode fibre:Light-sheet microscopy at the tip of a needle

    Get PDF
    We also thank the UK Engineering and Physics Sciences Research Council for funding under grant EP/J01771X/1. Finally, we would like to thank EXCELLENT TEAMS (CZ.1.07/2.3.00/30.0005) from European Social Fund and CEITEC - Central European Institute of Technology (CZ.1.05/1.1.00/02.0068) from European Regional Development Fund for support.Light-sheet fluorescence microscopy has emerged as a powerful platform for 3-D volumetric imaging in the life sciences. Here, we introduce an important step towards its use deep inside biological tissue. Our new technique, based on digital holography, enables delivery of the light-sheet through a multimode optical fibre - an optical element with extremely small footprint, yet permitting complex control of light transport processes within. We show that this approach supports some of the most advanced methods in light-sheet microscopy: by taking advantage of the cylindrical symmetry of the fibre, we facilitate the wavefront engineering methods for generation of both Bessel and structured Bessel beam plane illumination. Finally, we assess the quality of imaging on a sample of fluorescent beads fixed in agarose gel and we conclude with a proof-of-principle imaging of a biological sample, namely the regenerating operculum prongs of Spirobranchus lamarcki.Publisher PDFPeer reviewe

    Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription.

    Get PDF
    DNA sequence variation has been associated with quantitative changes in molecular phenotypes such as gene expression, but its impact on chromatin states is poorly characterized. To understand the interplay between chromatin and genetic control of gene regulation, we quantified allelic variability in transcription factor binding, histone modifications, and gene expression within humans. We found abundant allelic specificity in chromatin and extensive local, short-range, and long-range allelic coordination among the studied molecular phenotypes. We observed genetic influence on most of these phenotypes, with histone modifications exhibiting strong context-dependent behavior. Our results implicate transcription factors as primary mediators of sequence-specific regulation of gene expression programs, with histone modifications frequently reflecting the primary regulatory event

    Ideology and moral values in rhetorical framing:How wine was saved from the 19th Century Phylloxera Epidemic

    Get PDF
    Extant organizational research into crises has focused on the efforts of different actors to defend and legitimate their ideologies towards particular actions. Although insightful, such research has offered little knowledge about the moral reasoning underlying such action. In this paper, we explore how moral reasoning from different ideological viewpoints can lead to polarized debates and stalemate within the context of ecological crises. We apply our conceptual framework in an analysis of the 19th century French phylloxera epidemic. Drawing upon this analysis, we argue that, by adapting their moral reasoning, opposing stakeholder groups could maintain their underlying ideology, while at the same time pragmatically changing their actions towards the crisis. We discuss the theoretical implications of our analysis for historical research in organizational studies and research on organizations and the natural environment
    corecore