332 research outputs found

    Integration and disruption effects of shape and texture in haptic search

    Get PDF
    In a search task, where one has to search for the presence of a target among distractors, the target is sometimes easily found, whereas in other searches it is much harder to find. The performance in a search task is influenced by the identity of the target, the identity of the distractors and the differences between the two. In this study, these factors were manipulated by varying the target and distractors in shape (cube or sphere) and roughness (rough or smooth) in a haptic search task. Participants had to grasp a bundle of items and determine as fast as possible whether a predefined target was present or not. It was found that roughness and edges were relatively salient features and the search for the presence of these features was faster than for their absence. If the task was easy, the addition of these features could also disrupt performance, even if they were irrelevant for the search task. Another important finding was that the search for a target that differed in two properties from the distractors was faster than a task with only a single property difference, although this was only found if the two target properties were non-salient. This means that shape and texture can be effectively integrated. Finally, it was found that edges are more beneficial to a search task than disrupting, whereas for roughness this was the other way round

    Bringing bioinformatics to schools with the 4273pi project

    Get PDF
    The work was supported by the Science and Technology Facilities Council (STFC) under Grants STFC ST/R000328/1 (including salary to S.A.B., D.B., H.P., T.R.M. and non-salary costs) and STFC ST/T000872/1 (including salary to S.A.B., D.B., K.C., T.R.M. and non-salary costs), the Darwin Trust of Edinburgh (https://darwintrust.bio.ed.ac.uk; including salary to S.A.B. and H.P. and non-salary costs), the Wellcome Trust-University of Edinburgh Institutional Strategic Support Fund under Wellcome Trust Grant number 204804/Z/16/Z (salary to H.P.), a Public Engagement with Genetics Tier 2 Grant from the Genetics Society (https://genetics.org.uk; non-salary costs), the Natural Environment Research Council (NERC) under Grant NE/P000592/1 (including salary to N.C. and M.G.R. and non-salary costs), the Biotechnology and Biological Sciences Research Council (BBSRC) under Grant BB/S018506/1 (including salary to F.A. and non-salary costs), the School of Biological Sciences at the University of Edinburgh (https://www.ed.ac.uk/biology; including salary to S.A.B. and H.P. and non-salary costs) and its Institute of Evolutionary Biology (https://www.ed.ac.uk/biology/evolutionary-biology; non-salary costs), the Access for Rural Communities project (ARC) at University of St Andrews (https://www.st-andrews.ac.uk/study/access/projects/arc; non-salary costs) and the Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/V52038X/1 (including salary to S.A.B. and non-salary costs). E.W.J.W. is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society [208779/Z/17/Z] (including salary to E.W.J.W.).Over the last few decades, the nature of life sciences research has changed enormously, generating a need for a workforce with a variety of computational skills such as those required to store, manage, and analyse the large biological datasets produced by next-generation sequencing. Those with such expertise are increasingly in demand for employment in both research and industry. Despite this, bioinformatics education has failed to keep pace with advances in research. At secondary school level, computing is often taught in isolation from other sciences, and its importance in biological research is not fully realised, leaving pupils unprepared for the computational component of Higher Education and, subsequently, research in the life sciences. The 4273pi Bioinformatics at School project (https://4273pi.org) aims to address this issue by designing and delivering curriculum-linked, hands-on bioinformatics workshops for secondary school biology pupils, with an emphasis on equitable access. So far, we have reached over 180 schools across Scotland through visits or teacher events, and our open education resources are used internationally. Here, we describe our project, our aims and motivations, and the practical lessons we have learned from implementing a successful bioinformatics education project over the last 5 years.Publisher PDFPeer reviewe

    Study of ultrathin Pt/Co/Pt trilayers modified by nanosecond XUV pulses from laser-driven plasma source

    Get PDF
    We have studied the structural mechanisms responsible for the magnetic reorientation between in-plane and out-of-plane magnetization in the (25 nm Pt)/(3 and 10 nm Co)/(3 nm Pt) trilayer systems irradiated with nanosecond XUV pulses generated with laser-driven gas-puff target plasma source of a narrow continuous spectrum peaked at wavelength of 11 nm. The thickness of individual layers, their density, chemical composition and irradiation-induced lateral strain were deduced from symmetric and asymmetric X-ray diffraction (XRD) patterns, grazing-incidence X-ray reflectometry (GIXR), grazing incidence X-ray fluorescence (GIXRF), extended X-ray absorption fine structure (EXAFS) and transmission electron microscopy (TEM) measurements. In the as grown samples we found, that the Pt buffer layers are relaxed and that the layer interfaces are sharp. As a result of a quasi-uniform irradiation of the samples, the XRD, EXAFS, GIXR and GIXRF data reveal the formation of two distinct layers composed of Pt1-xCox alloys with different Co concentrations, dependent on the thickness of the as grown magnetic Co film but with similar ∼1% lateral tensile residual strain. For smaller exposure dose (lower number of accumulated pulses) only partial interdiffusion at the interfaces takes place with the formation of a tri-layer composed of Co-Pt alloy sandwiched between thinned Pt layers, as revealed by TEM. The structural modifications are accompanied by magnetization changes, evidenced by means of magneto-optical microscopy. The difference in magnetic properties of the irradiated samples can be related to their modification in Pt1-xCox alloy composition, as the other parameters (lateral strain and alloy thickness) remain almost unchanged. The out-of-plane magnetization observed for the sample with initially 3 nm Co layer can be due to a significant reduction of demagnetization factor resulting from a lower Co concentration

    A multidisciplinary study unveils the nature of a Roman ink of the I century AD

    Get PDF
    A multi-instrumental approach combining highly sensitive Synchrotron Radiation-based techniques was used to provide information on the real composition of a dry black ink powder found in a bronze inkwell of the first century AD. The presence of Pb, Cu and Fe in the powder, revealed by XRF and ICP-OES data, leads to raise several hypotheses on their origin. The inkpot and its lid were also investigated by Hand-Held XRF, revealing a bronze alloy (Cu-Sn) with a certain amount of Fe and Pb. The lid was found to be particularly enriched in lead. XRPD, XAS and FTIR measurements showed a substantial presence of silicates and common clay minerals in the ink along with cerussite and malachite, Pb and Cu bearing-carbonates, respectively. These evidences support the hypothesis of an important contamination of the ink sample by the burial environment (soil) and the presence of degradation products of the bronze inkpot. The combined use of IR, Raman, and GC-MS evidenced that the black ink is mainly composed of amorphous carbon deriving from the combustion of organic material mixed with a natural binding agent, Arabic gum

    Electronic structure of MAPbI3 and MAPbCl3: importance of band alignment

    Get PDF
    Since their first appearance, organic-inorganic perovskite absorbers have been capturing the attention of the scientific community. While high efficiency devices highlight the importance of band level alignment, very little is known on the origin of the strong n-doping character observed in the perovskite. Here, by means of a highly accurate photoemission study, we shed light on the energy alignment in perovskite-based devices. Our results suggest that the interaction with the substrate may be the driver for the observed doping in the perovskite samples

    Sensitivity and Specificity of Multiple Kato-Katz Thick Smears and a Circulating Cathodic Antigen Test for Schistosoma mansoni Diagnosis Pre- and Post-repeated-Praziquantel Treatment

    Get PDF
    Two Kato-Katz thick smears (Kato-Katzs) from a single stool are currently recommended for diagnosing Schistosoma mansoni infections to map areas for intervention. This ‘gold standard’ has low sensitivity at low infection intensities. The urine point-of-care circulating cathodic antigen test (POC-CCA) is potentially more sensitive but how accurately they detect S. mansoni after repeated praziquantel treatments, their suitability for measuring drug efficacy and their correlation with egg counts remain to be fully understood. We compared the accuracies of one to six Kato-Katzs and one POC-CCA for the diagnosis of S. mansoni in primary-school children who have received zero to ten praziquantel treatments. We determined the impact each diagnostic approach may have on monitoring and evaluation (M&E) and drug-efficacy findings

    Probing the angular and polarization reconstruction of the ARIANNA detector at the South Pole

    Full text link
    The sources of ultra-high energy (UHE) cosmic rays, which can have energies up to 10^20 eV, remain a mystery. UHE neutrinos may provide important clues to understanding the nature of cosmic-ray sources. ARIANNA aims to detect UHE neutrinos via radio (Askaryan) emission from particle showers when a neutrino interacts with ice, which is an efficient method for neutrinos with energies between 10^16 eV and 10^20 eV. The ARIANNA radio detectors are located in Antarctic ice just beneath the surface. Neutrino observation requires that radio pulses propagate to the antennas at the surface with minimum distortion by the ice and firn medium. Using the residual hole from the South Pole Ice Core Project, radio pulses were emitted from a transmitter located up to 1.7 km below the snow surface. By measuring these signals with an ARIANNA surface station, the angular and polarization reconstruction abilities are quantified, which are required to measure the direction of the neutrino. After deconvolving the raw signals for the detector response and attenuation from propagation through the ice, the signal pulses show no significant distortion and agree with a reference measurement of the emitter made in an anechoic chamber. Furthermore, the signal pulses reveal no significant birefringence for our tested geometry of mostly vertical ice propagation. The origin of the transmitted radio pulse was measured with an angular resolution of 0.37 degrees indicating that the neutrino direction can be determined with good precision if the polarization of the radio-pulse can be well determined. In the present study we obtained a resolution of the polarization vector of 2.7 degrees. Neither measurement show a significant offset relative to expectation

    Onchocerciasis transmission in Ghana: biting and parous rates of host-seeking sibling species of the Simulium damnosum complex

    Get PDF
    Background: Ghana is renowned for its sibling species diversity of the Simulium damnosum complex, vectors of Onchocerca volvulus. Detailed entomological knowledge becomes a priority as onchocerciasis control policy has shifted from morbidity reduction to elimination of infection. To date, understanding of transmission dynamics of O. volvulus has been mainly based on S. damnosum sensu stricto (s.s.) data. We aim to elucidate bionomic features of vector species of importance for onchocerciasis elimination efforts. Methods: We collected S. damnosum sensu lato from seven villages in four Ghanaian regions between 2009 and 2011, using standard vector collection, and human- and cattle-baited tents. Taxa were identified using morphological and molecular techniques. Monthly biting rates (MBR), parous rates and monthly parous biting rates (MPBR) are reported by locality, season, trapping method and hour of collection for each species. Results: S. damnosum s.s./S. sirbanum were collected at Asubende and Agborlekame, both savannah villages. A range of species was caught in the Volta region (forest-savannah mosaic) and Gyankobaa (forest), with S. squamosum or S. sanctipauli being the predominant species, respectively. In Bosomase (southern forest region) only S. sanctipauli was collected in the 2009 wet season, but in the 2010 dry season S. yahense was also caught. MBRs ranged from 714 bites/person/month at Agborlekame (100% S. damnosum s.s./S. sirbanum) to 8,586 bites/person/month at Pillar 83/Djodji (98.5% S. squamosum). MBRs were higher in the wet season. In contrast, parous rates were higher in the dry season (41.8% vs. 18.4%), resulting in higher MPBRs in the dry season. Daily host-seeking activity of S. damnosum s.s./S. sirbanum was bimodal, whilst S. squamosum and S. sanctipauli had unimodal afternoon peaks. Conclusions: The bionomic differences between sibling species of the S. damnosum complex need to be taken into account when designing entomological monitoring protocols for interventions and parameterising mathematical models for onchocerciasis control and elimination
    • …
    corecore