65 research outputs found

    Identifying Antimalarial Drug Targets by Cellular Network Analysis

    Get PDF
    Malaria is one of the most deadly parasitic infectious diseases and identifying novel drug targets is mandatory for the development of new drugs. To find drug targets, metabolic and signaling networks have been constructed. These networks have been investigated by graph theoretical methods. Furthermore, mechanistic models have been set up based on stoichiometric equations. At equilibrium, production and consumption of internal metabolites need to be balanced leading to a large set of flux equations, and this can be used for metabolic flux simulations to identify drug targets. Analysis of flux variability and knockout simulations were applied to detect potential drug targets whose absence reduces the predicted biomass production and hence viability of the parasite in the host cell. Furthermore, not only the parasite was studied, but also the interaction between the host and the parasite, and, based on experimental expression data, stage-specific metabolic models of the parasite were developed, particularly during the red-blood cell stage. In this chapter, these various network-based approaches for drug target prediction will be explained and summarized

    Computational Analysis of the Metabolic Network of Microorganisms to Detect Potential Drug Targets

    Get PDF
    Identifying essential genes in pathogens facilitates the identification of the corresponding proteins as potential drug targets and is the basis for understanding the minimum requirements for a synthetic cell. However, the experimental assessment of gene essentiality is resource-intensive and not feasible for all organisms, especially pathogens. Thus, the computational identification of new drug targets has become an important pursuit in biomedical research. In particular, essential metabolic enzymes have been successfully targeted by specific drugs. For directed drug development, the prediction of essential genes, especially in metabolic networks, is needed. In this thesis, I describe our development of a graph-based investigation tool aimed at finding possible deviations in a mutated network by knocking out particular reactions, and examining its producibility with a breadth-first search algorithm. We showed that this approach performed well at predicting new targets for antimalarial drugs. In addition, we analyzed the metabolic networks of bacteria and developed a machine learning approach based on various graph-based descriptors, including our own developed descriptor, that were potentially associated with the robustness and stabilization of metabolic networks. These descriptors were related to gene essentiality and included flux deviations, centrality and shortest paths. Besides these network topological features, we also used genomic and transcriptomic features, such as sequence characteristics and co-expression properties, as descriptors. The machine learning technique was developed to identify drug targets in metabolism. The metabolic networks of Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium were analyzed. The well-studied metabolic network of Escherichia coli was used because it was an ideal model for formulating and validating our method. With publicly available genome-wide knockout screens, it was shown that topological, genomic and transcriptomic features describing the network are sufficient for defining drug targets. Furthermore, we tested our method across bacterial species and strains by using the experimental data from the genome-wide knockout screens of one bacterial organism to infer essential genes for another related bacterial organism. Our method is generic, and it enables the prediction of essential genes from a bacterial reference organism to a related query organism without any knowledge about the essentiality of the genes of the query organism. In general, such a method is beneficial for inferring drug targets when experimental data about genome-wide knockout screens are not available for the investigated organism

    Identifying essential genes in bacterial metabolic networks with machine learning methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying essential genes in bacteria supports to identify potential drug targets and an understanding of minimal requirements for a synthetic cell. However, experimentally assaying the essentiality of their coding genes is resource intensive and not feasible for all bacterial organisms, in particular if they are infective.</p> <p>Results</p> <p>We developed a machine learning technique to identify essential genes using the experimental data of genome-wide knock-out screens from one bacterial organism to infer essential genes of another related bacterial organism. We used a broad variety of topological features, sequence characteristics and co-expression properties potentially associated with essentiality, such as flux deviations, centrality, codon frequencies of the sequences, co-regulation and phyletic retention. An organism-wise cross-validation on bacterial species yielded reliable results with good accuracies (area under the receiver-operator-curve of 75% - 81%). Finally, it was applied to drug target predictions for <it>Salmonella typhimurium</it>. We compared our predictions to the viability of experimental knock-outs of <it>S. typhimurium </it>and identified 35 enzymes, which are highly relevant to be considered as potential drug targets. Specifically, we detected promising drug targets in the non-mevalonate pathway.</p> <p>Conclusions</p> <p>Using elaborated features characterizing network topology, sequence information and microarray data enables to predict essential genes from a bacterial reference organism to a related query organism without any knowledge about the essentiality of genes of the query organism. In general, such a method is beneficial for inferring drug targets when experimental data about genome-wide knockout screens is not available for the investigated organism.</p

    Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico

    Get PDF
    Malaria is one of the world’s most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Biomedical research could enable treating the disease by effectively and specifically targeting essential enzymes of this parasite. However, the parasite has developed resistance to existing drugsmaking it indispensable to discover new drugs. We have established a simple computational tool which analyses the topology of the metabolic network of P. falciparum to identify essential enzymes as possible drug targets.Weinvestigated the essentiality of a reaction in the metabolic network by deleting (knocking-out) such a reaction in silico. The algorithmselected neighbouring compounds of the investigated reaction that had to be produced by alternative biochemical pathways. Using breadth first searches, we tested qualitatively if these products could be generated by reactions that serve as potential deviations of the metabolic flux. With this we identified 70 essential reactions. Our results were compared with a comprehensive list of 38 targets of approved malaria drugs. When combining our approach with an in silico analysis performed recently [Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B., 2004. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 14, 917–924] we could improve the precision of the prediction results. Finally we present a refined list of 22 new potential candidate targets for P. falciparum, half of which have reasonable evidence to be valid targets against micro-organisms and cancer

    Machine learning based analyses on metabolic networks supports high-throughput knockout screens

    Get PDF
    Background: Computational identification of new drug targets is a major goal of pharmaceutical bioinformatics. Results: This paper presents a machine learning strategy to study and validate essential enzymes of a metabolic network. Each single enzyme was characterized by its local network topology, gene homologies and co-expression, and flux balance analyses. A machine learning system was trained to distinguish between essential and non-essential reactions. It was validated by a comprehensive experimental dataset, which consists of the phenotypic outcomes from single knockout mutants of Escherichia coli (KEIO collection). We yielded very reliable results with high accuracy (93%) and precision (90%). We show that topologic, genomic and transcriptomic features describing the network are sufficient for defining the essentiality of a reaction. These features do not substantially depend on specific media conditions and enabled us to apply our approach also for less specific media conditions, like the lysogeny broth rich medium. Conclusion: Our analysis is feasible to validate experimental knockout data of high throughput screens, can be used to improve flux balance analyses and supports experimental knockout screens to define drug targets

    Computational and experimental analysis identified 6-diazo-5-oxonorleucine as a potential agent for treating infection by Plasmodium falciparum

    Get PDF
    Plasmodium falciparum (PF) is the most severe malaria parasite. It is developing resistance quickly to existing drugs making it indispensable to discover new drugs. Effective drugs have been discovered targeting metabolic enzymes of the parasite. In order to predict new drug targets, computational methods can be used employing database information of metabolism. Using this data, we performed recently a computational network analysis of metabolism of PF. We analyzed the topology of the network to find reactions which are sensitive against perturbations, i.e., when a single enzyme is blocked by drugs. We now used a refined network comprising also the host enzymes which led to a refined set of the five targets glutamyl–tRNA (gln) amidotransferase, hydroxyethylthiazole kinase, deoxyribose–phophate aldolase, pseudouridylate synthase, and deoxyhypusine synthase. It was shown elsewhere that glutamyl– tRNA (gln) amidotransferase of other microorganisms can be inhibited by 6-diazo-5-oxonorleucine. Performing a half maximal inhibitory concentration (IC50) assay, we showed, that 6-diazo-5-oxonorleucine is also severely affecting viability of PF in blood plasma of the human host. We confirmed this by an in vivo study observing Plasmodium berghei infected mice

    Essential gene prediction in Drosophila melanogaster using machine learning approaches based on sequence and functional features

    Get PDF
    Genes are termed to be essential if their loss of function compromises viability or results in profound loss of fitness. On the genome scale, these genes can be determined experimentally employing RNAi or knockout screens, but this is very resource intensive. Computational methods for essential gene prediction can overcome this drawback, particularly when intrinsic (e.g. from the protein sequence) as well as extrinsic features (e.g. from transcription profiles) are considered. In this work, we employed machine learning to predict essential genes in Drosophila melanogaster. A total of 27,340 features were generated based on a large variety of different aspects comprising nucleotide and protein sequences, gene networks, protein protein interactions, evolutionary conservation and functional annotations. Employing cross-validation, we obtained an excellent prediction performance. The best model achieved in D. melanogaster a ROCAUC of 0.90, a PR-AUC of 0.30 and a F1 score of 0.34. Our approach considerably outperformed a benchmark method in which only features derived from the protein sequences were used (P < 0.001). Investigating which features contributed to this success, we found all categories of features, most prominently network topological, functional and sequence-based features. To evaluate our approach we performed the same workflow for essential gene prediction in human and achieved an ROC-AUC = 0.97, PR-AUC = 0.73, and F1 = .64. In summary, this study shows that using our well-elaborated assembly of features covering a broad range of intrinsic and extrinsic gene and protein features enabled intelligent systems to predict well the essentiality of genes in an organism

    Computational Biology and Bioinformatics in Nigeria

    Get PDF
    Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries. © 2014 Fatumo et al.SAF was supported by H3ABioNet NABDA Node, Abuja, Nigeria with NIH Common Fund Award/NHGRI Grant Number U41HG006941 and Genetic Epidemiology Group at Wellcome Trust Sanger Institute.Published versio
    • …
    corecore