707 research outputs found

    The RD53 Collaboration's SystemVerilog-UVM Simulation Framework and its General Applicability to Design of Advanced Pixel Readout Chips

    Full text link
    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger latency buffering section of pixel chips. A fully shared architecture and a distributed one have been described at behavioral level and simulated; the resulting memory occupancy statistics and hit loss rates have subsequently been compared.Comment: 15 pages, 10 figures (11 figure files), submitted to Journal of Instrumentatio

    Symptomatic nonconvulsive status epilepticus erroneously suggestive of sporadic Creutzfeldt-Jakob disease

    Get PDF
    Nonconvulsive status epilepticus (NCSE) may have heterogeneous presentations and differential diagnosis may be particularly difficult because clinical signs coupled with periodic EEG pattern are most often subtle or non-specific. Moreover, few cases of NCSE have been previously described as the presenting symptom of sporadic Creutzfeldt–Jakob disease (sCJD) [1,4,5,7]. We describe a patient with a NCSE strongly, but erroneously, suggestive of a probable sCJD

    Continuum-mechanical, Anisotropic Flow model for polar ice masses, based on an anisotropic Flow Enhancement factor

    Get PDF
    A complete theoretical presentation of the Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE model) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large polar ice masses in which induced anisotropy occurs. The anisotropic response of the polycrystalline ice is described by a generalization of Glen's flow law, based on a scalar anisotropic enhancement factor. The enhancement factor depends on the orientation mass density, which is closely related to the orientation distribution function and describes the distribution of grain orientations (fabric). Fabric evolution is governed by the orientation mass balance, which depends on four distinct effects, interpreted as local rigid body rotation, grain rotation, rotation recrystallization (polygonization) and grain boundary migration (migration recrystallization), respectively. It is proven that the flow law of the CAFFE model is truly anisotropic despite the collinearity between the stress deviator and stretching tensors.Comment: 22 pages, 5 figure

    Evaluation of the LEP Centre-of-Mass Energy Above the W-Pair Production Threshold

    Get PDF
    Knowledge of the centre-of-mass energy at LEP2 is of primary importance to set the absolute energy scale for the measurement of the W-boson mass. The beam energy above 80 GeV is derived from continuous measurements of the magnetic bending field by 16 NMR probes situated in a number of the LEP dipoles. The relationship between the fields measured by the probes and the beam energy is calibrated against precise measurements of the average beam energy between 41 and 55 GeV made using the resonant depolarisation technique. The linearity of the relationship is tested by comparing the fields measured by the probes with the total bending field measured by a flux loop. This test results in the largest contribution to the systematic uncertainty. Several further corrections are applied to derive the the centre-of-mass energies at each interaction point. In addition the centre-of-mass energy spread is evaluated. The beam energy has been determined with a precision of 25 MeV for the data taken in 1997, corresponding to a relative precision of 2.7x10^{-4}. This is small in comparison to the present uncertainty on the W mass measurement at LEP. However, the ultimate statistical precision on the W mass with the full LEP2 data sample should be around 25 MeV, and a smaller uncertainty on the beam energy is desirable. Prospects for improvements are outlined.Comment: 24 pages, 10 figures, Latex, epsfig; replaced by version accepted by European Physical Journal

    Preliminary Report on the Consequences of LHC Civil Engineering for the SPS and LEP

    Get PDF
    The excavation of the shafts and caverns for the ATLAS and CMS experiments of the LHC will start whilst LEP and the SPS are running. This will be at a period when LEP should be at its peak performance and the SPS will be providing beams for LEP, fixed target physics and LHC test beams. Simulations show that movements of the machine tunnels can be expected during the excavation and it is essential that this does not affect the performance of the SPS and LEP. These movements are of sufficient amplitude to prevent machine operation if no precautions are taken. This preliminary report outlines the problems and suggests what actions should be taken to ensure efficient operation of the SPS and LEP during the critical period

    MULTIPLE HIGH CURRENT BUNCHES IN PEP-II

    Get PDF
    Operation with colliding beams at PEP-II has progressed remarkably well with over half the design specific luminosity and 5:2 10 32 cm,2s,1 in multiple bunches demonstrated during the last commissioning period before installation of the BABAR detector. Further luminosity increases are anticipated as the vertical beam size is reduced and beam currents are raised towards design values. At high currents interesting multibunch dynamics, which depend strongly on current distribution, have been observed during single-beam commissioning studies. Transverse beam instabilities nominally controlled using bunch-by-bunch feedback were observed to be significantly suppressed, in the absence of feedback, with beams in collision.

    What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans

    Get PDF
    Plan evaluation is a key step in the radiotherapy treatment workflow. Central to this step is the assessment of treatment plan quality. Hence, it is important to agree on what we mean by plan quality and to be fully aware of which parameters it depends on. We understand plan quality in radiotherapy as the clinical suitability of the delivered dose distribution that can be realistically expected from a treatment plan. Plan quality is commonly assessed by evaluating the dose distribution calculated by the treatment planning system (TPS). Evaluating the 3D dose distribution is not easy, however; it is hard to fully evaluate its spatial characteristics and we still lack the knowledge for personalising the prediction of the clinical outcome based on individual patient characteristics. This advocates for standardisation and systematic collection of clinical data and outcomes after radiotherapy. Additionally, the calculated dose distribution is not exactly the dose delivered to the patient due to uncertainties in the dose calculation and the treatment delivery, including variations in the patient set-up and anatomy. Consequently, plan quality also depends on the robustness and complexity of the treatment plan. We believe that future work and consensus on the best metrics for quality indices are required. Better tools are needed in TPSs for the evaluation of dose distributions, for the robust evaluation and optimisation of treatment plans, and for controlling and reporting plan complexity. Implementation of such tools and a better understanding of these concepts will facilitate the handling of these characteristics in clinical practice and be helpful to increase the overall quality of treatment plans in radiotherapy

    Associations of a metal mixture measured in multiple biomarkers with IQ: Evidence from italian adolescents living near ferroalloy industry

    Get PDF
    BACKGROUND: Research on the health effects of chemical mixtures has focused mainly on early life rather than adolescence, a potentially important developmental life stage. OBJECTIVES: We examined associations of a metal mixture with general cognition in a cross-sectional study of adolescents residing near ferromanga-nese industry, a source of airborne metals emissions. METHODS: We measured manganese (Mn), lead (Pb), copper (Cu), and chromium (Cr) in hair, blood, urine, nails, and saliva from 635 Italian adolescents 10–14 years of age. Full-scale, verbal, and performance intelligence quotient (FSIQ, VIQ, PIQ) scores were assessed using the Wechsler Intelligence Scale for Children-III. Multivariable linear regression and Bayesian kernel machine regression (BKMR) were used to estimate associations of the metal mixture with IQ. In secondary analyses, we used BKMR’s hierarchical variable selection option to inform biomarker selection for Mn, Cu, and Cr. RESULTS: Median metal concentrations were as follows: hair Mn, 0:08 lg=g; hair Cu, 9:6 lg=g; hair Cr, 0:05 lg=g; and blood Pb, 1:3 lg=dL. Adjusted models revealed an inverted U-shaped association between hair Cu and VIQ, consistent with Cu as an essential nutrient that is neurotoxic in excess. At low levels of hair Cu (10th percentile, 5:4 lg=g), higher concentrations (90th percentiles) of the mixture of Mn, Pb, and Cr (0:3 lg=g, 2:6 lg=dL, and 0:1 lg=g, respectively) were associated with a 2.9 (95% CI: −5:2, −0:5)–point decrease in VIQ score, compared with median concentrations of the mixture. There was suggestive evidence of interaction between Mn and Cu. In secondary analyses, saliva Mn, hair Cu, and saliva Cr were selected as the biomarkers most strongly associated with VIQ score. DISCUSSION: Higher adolescent levels of Mn, Pb, and Cr were associated with lower IQ scores, especially at low Cu levels. Findings also support fur-ther investigation into Cu as both beneficial and toxic for neurobehavioral outcomes

    Guided self-assembly of lateral InAs/GaAs quantum-dot molecules for single molecule spectroscopy

    Get PDF
    We report on the growth and characterization of lateral InAs/GaAs (001) quantum-dot molecules (QDMs) suitable for single QDM optical spectroscopy. The QDMs, forming by depositing InAs on GaAs surfaces with self-assembled nanoholes, are aligned along the [] direction. The relative number of isolated single quantum dots (QDs) is substantially reduced by performing the growth on GaAs surfaces containing stepped mounds. Surface morphology and X-ray measurements suggest that the strain produced by InGaAs-filled nanoholes superimposed to the strain relaxation at the step edges are responsible for the improved QDM properties. QDMs are Ga-richer compared to single QDs, consistent with strain- enhanced intermixing. The high optical quality of single QDMs is probed by micro-photoluminescence spectroscopy in samples with QDM densities lower than 108 cm−2
    • 

    corecore