17 research outputs found

    Zero-Boiloff Cryogenic Storage Cryocooler Integration Test

    Get PDF
    Developments in NASA Glenn Research Center's Centaur work have led to an exciting new cryogenic storage concept being considered for future NASA space missions. With long-duration cryogenic storage, propellants will boil off because of the environmental heating of the tank. To accommodate these losses, extra propellant is required along with larger propellant tanks. Analyses of space transportation concepts show that spacetransfer cryogenic stages with the zero boiloff (ZBO) cryogenic storage concept reduce the stage mass for missions longer than approximately 45 days in low Earth orbit. The ZBO system consists of an active cryocooling system using a cryocooler in addition to traditional passive thermal insulation. Engineers at Glenn analyzed, designed, built, and bench tested a heat exchanger and integration hardware for a large-scale ZBO demonstration for the NASA Marshall Space Flight Center. The heat exchanger, which transfers the heat that enters the tank from the fluid to the cryocooler, must limit the temperature difference across it to limit the cryocooler size and power requirements. With a low temperature difference, the system efficiency is improved. For that temperature difference to be reduced, the thermal conductivity must be as high as possible at liquid hydrogen temperatures, around 25 K (-248 C). In addition, it is important for the heat exchanger to be welded to a stainless steel flange and have enough strength to accommodate piping stress. High-conductivity copper was selected and fabricated, then integrated with the stainless steel piping tee as shown in the cutaway representation. Literature showed that this conductivity might range from 2 to 100 W/cm/K but that is was likely to be around 13 W/cm/K. Unexpectedly, this conductivity was measured to be 23 W/cm/K, which limited the temperature increase along the heat exchanger to just 2 K. This limited temperature increase, compared with the predicted difference of 3.5 K, improves the overall system efficiency by 7.4 percent and limits the expected integration losses to a projected 4 percent with a flight design for liquid hydrogen storage. These results improve the cryocooler integration concept by allowing the cryocooler to operate at a lower input power, or by potentially permitting a smaller cryocooler to be selected

    Zero Boil-Off System Testing

    Get PDF
    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryocooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure

    Modeling a Transient Pressurization with Active Cooling Sizing Tool

    Get PDF
    As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank pressure recovery with ZBO of a liquid oxygen propellant tank

    Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage

    Get PDF
    A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models

    Cryogenic Boil-Off Reduction System Testing

    Get PDF
    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to the high specific impulse that can be achieved using engines suitable for moving 10's to 100's of metric tons of payload mass to destinations outside of low earth orbit. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several days. The losses can be greatly reduced by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and by the integration of self-supporting multi-layer insulation. The active thermal control technology under development is the integration of the reverse turbo- Brayton cycle cryocooler to the propellant tank through a distributed cooling network of tubes coupled to a shield in the tank insulation and to the tank wall itself. Also, the self-supporting insulation technology was utilized under the shield to obtain needed tank applied LH2 performance. These elements were recently tested at NASA Glenn Research Center in a series of three tests, two that reduced LH2 boil-off and one to eliminate LO2 boil-off. This test series was conducted in a vacuum chamber that replicated the vacuum of space and the temperatures of low Earth orbit. The test results show that LH2 boil-off was reduced 60% by the cryocooler system operating at 90K and that robust LO2 zero boil-off storage, including full tank pressure control was achieved

    Cryogenic Nitrogen Thermosyphon Developed and Characterized

    Get PDF
    A two-phase nitrogen thermosyphon was developed at the NASA Glenn Research Center to efficiently integrate a cryocooler into an insulated liquid-nitrogen-filled tank as part of an advanced development zero-boiloff (ZBO) ground test. NASA Marshall Space Flight Center's (MSFC) Advanced Space Transportation Program supported this test to improve the performance of in-space propulsion system concepts. Recent studies (ref. 1) have shown significant mass reductions and other advantages when incorporating active cooling in a ZBO configuration, enabling consideration of high-performing cryogenic propellants for long-duration applications in space. Active cooling was integrated via a thermosyphon, made of copper, 42 in. (1070 mm) long with an inner diameter of 0.436 in. (11 mm). It was charged with nitrogen to 225 psia at 300 K, which provided a fill ratio of 15 percent. The temperatures and heat flows through the thermosyphon were monitored during the startup phase of the ZBO test, and steady-state tests were conducted over a range of increasing and decreasing heat flows. The results also were compared with the initial design calculations and with results for a similar thermosyphon. They show that the thermal resistance of the thermosyphon was one-half of that expected--0.2 K/W at a heat flow of 8.0 W. The design calculations also showed that this resistance can be made relatively constant over a wider range of heat flows by making the ratio of evaporator area to condenser area 3:1. The better-than-expected results will translate into reduced integration loss for the ZBO concept

    Reduced Boil-Off System Sizing

    Get PDF
    NASA is currently developing cryogenic propellant storage and transfer systems for future space exploration and scientific discovery missions by addressing the need to raise the technology readiness level of cryogenic fluid management technologies. Cryogenic propellants are baselined in many propulsion systems due to their inherently high specific impulse; however, their low boiling points can cause substantial boil-off losses over time. Recent efforts such as the Reduced Boil-off Testing and the Active Thermal Control Scaling Study provide important information on the benefit of an active cooling system applied to LH2 propellant storage. Findings show that zero-boil off technologies can reduce overall mass in LH2 storage systems when low Earth orbit loiter periods extend beyond two months. A significant part of this mass reduction is realized by integrating two stages of cooling: a 20 K stage to intercept heat at the tank surface, and a 90 K stage to reduce the heat entering the less efficient 20 K stage. A missing element in previous studies, which is addressed in this paper, is the development of a direct method for sizing the 90 K cooling stage. Such a method requires calculation of the heat entering both the 90 K and 20 K stages as compared to the overall system masses, and is reliant upon the temperature distribution, performance, and unique design characteristics of the system in question. By utilizing the known conductance of a system without active thermal control, the heat being intercepted by a 90 K stage can be calculated to find the resultant lift and mass of each active thermal control stage. Integral to this is the thermal conductance of the cooling straps and the broad area cooling shield, key parts of the 90 K stage. Additionally, a trade study is performed to show the ability of the 90 K cooling stage to reduce the lift on the 20 K cryocooler stage, which is considerably less developed and efficient than 90 K cryocoolers

    Methane Lunar Surface Thermal Control Test

    Get PDF
    NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages

    NASA Cryocooler Technology Developments and Goals to Achieve Zero Boil-Off and to Liquefy Cryogenic Propellants for Space Exploration

    Get PDF
    NASAs interest in human exploration of Mars has driven it to invest in 20K cryocooler technology to achieve zero boil-off of liquid hydrogen and 90K cryocooler technology to achieve zero boil-off liquid oxygen or liquid methane as well as to liquefy oxygen or methane that is produced on the surface of Mars. These investments have demonstrated efficiency progress, mass reductions, and integration insights. A history of the application of cryocooler technology to zero boil-off propellant storage is presented. A trade space on distributed cooling is shown, along with the progress of reverse turbo-Brayton cycle cryocoolers, where the specific power and specific mass have dropped, decreasing the mass and power of these cryocoolers. Additionally, the cryocooler technology advancements of recuperators and compressors are described. Finally, NASAs development ideas with respect to zero boil-off technology are discussed

    Analysis of Water Surplus at the Lunar Outpost

    Get PDF
    This paper evaluates the benefits to the lunar architecture and outpost of having a surplus of water, or a surplus of energy in the form of hydrogen and oxygen, as it has been predicted by Constellation Program's Lunar Surface System analyses. Assumptions and a scenario are presented leading to the water surplus and the revolutionary surface element options for improving the lunar exploration architecture and mission objectives. For example, some of the elements that can benefit from a water surplus are: the power system energy storage can minimize the use of battery systems by replacing batteries with higher energy density fuel cell systems; battery packs on logistics pallets can also be minimized; mobility asset power system mass can be reduced enabling more consumables and extended roving duration and distance; small robotic vehicles (hoppers) can be used to increase the science exploration range by sending round-trip robotic missions to anywhere on the Moon using in-situ produced propellants
    corecore