27 research outputs found

    U.S. manure methane emissions represent a greater contributor to implied climate warming than enteric methane emissions using the global warming potential* methodology

    Get PDF
    IntroductionIt is important to relate different greenhouse gas (GHG) emissions to a carbon dioxide (CO2) equivalence (CO2-e) basis. This is typically done by multiplying the emissions of a GHG by its global warming potential (GWP), usually on a 100-year basis (GWP100). For methane (CH4), the predominant GHG from livestock production, the GWP100 value is 28. The GWP100 method has been shown to not adequately relate CH4 emissions to actual climate warming due to CH4′s short atmospheric lifespan (~12 years). As such, a newer method has been developed, termed GWP*. This method relates current emission rates to previous emission rates, typically on a 20-year time horizon. To date, the implications of using GWP* rather than GWP100 have not been discussed for manure emissions and have not been discussed for enteric and manure emissions relative to different livestock species or geographical regions of the United States.MethodsUsing emission estimate data from the U.S. Environmental Protection Agency (EPA), we assessed how national manure and enteric CH4 emissions changed from 1990 to 2020.ResultsThe average rate of change was analyzed by regression. Enteric CH4 emissions remained relatively constant with a non-significant slope (P = 0.51), whereas manure CH4 emissions have been increasing (P < 0.01; R2 = 0.96) by 0.03-MMT/year. Furthermore, investigation demonstrated that the increase in manure CH4 emissions was largely driven by the dairy (25.9-kt increase in manure CH4 per year; P < 0.01; R2 = 0.98) and swine (5.4-kt increase in manure CH4 per year; P < 0.01; R2 = 0.50) industries. Due to the increasing emission estimates, manure CH4 [90.8-MMT CO2-warming equivalence (CO2-we) on average] was a larger contributor to climate warming than enteric CH4 (89.2-MMT CO2-we on average) from 2010 through 2020, when calculated with the GWP* methodology. This stands in contrast to the GWP100 methodology, which suggests that enteric CH4 emissions (191-MMT CO2-e) from 2010 to 2020 were on average 206% greater contributors to warming than manure CH4 emissions (62.3-MMT CO2-e).DiscussionThese results suggest that manure CH4 emissions may be contributing more to climate warming than enteric CH4, and more effort may be required to mitigate this source of emissions

    Environmental effects on water intake and water intake prediction in growing beef cattle

    Get PDF
    Water is an essential nutrient, but there are few recent studies that evaluate how much water individual beef cattle consume and how environmental factors affect an individual’s water intake (WI). Most studies have focused on WI of whole pens rather than WI of individual animals. Thus, the objective of this study was to evaluate the impact of environmental parameters on individual-animal WI across different seasons and develop prediction equations to estimate WI, including within different environments and management protocols. Individual daily feed intake and WI records were collected on 579 crossbred steers for a 70-d period following a 21-d acclimation period for feed and water bunk training. Steers were fed in 5 separate groups over a 3-yr period from May 2014 to March 2017. Individual weights were collected every 14 d and weather data were retrieved from the Oklahoma Mesonet’s Stillwater station. Differences in WI as a percent of body weight (WI%) were analyzed accounting for average temperature (TAVG), relative humidity (HAVG), solar radiation (SRAD), and wind speed (WSPD). Seasonal (summer vs. winter) and management differences (ad libitum vs. slick bunk) were examined. Regression analysis was utilized to generate 5 WI prediction equations (overall, summer, winter, slick, and ad libitum). There were significant (P \u3c 0.05) differences in WI between all groups when no environmental parameters were included in the model. Although performance was more similar after accounting for all differences in weather variables, significant (P \u3c 0.05) seasonal and feed management differences were still observed for WI%, but were less than 0.75% of steer body weight. The best linear predictors of daily WI (DWI) were dry mater intake (DMI), metabolic body weights (MWTS), TAVG, SRAD, HAVG, and WSPD. Slight differences in the coefficient of determinations for the various models were observed for the summer (0.34), winter (0.39), ad libitum (0.385), slick bunk (0.41), and overall models (0.40). Based on the moderate R2 values for the WI prediction equations, individual DWI can be predicted with reasonable accuracy based on the environmental conditions that are present, MWTS, and DMI consumed, but substantial variation exists in individual animal WI that is not accounted for by these models

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Future of Sustainable Beef in the United States

    No full text
    Cómo se visualiza el futuro de la industria de la carne de bovino en EU y, en tal caso, para toda América del Norte? ¿Será sustentable? ¿Qué se debe entender por una producción de carne de bovino sustentable? Con inventarios de ganado en su nivel mínimo en los últimos 50 años, precios de los granos a un máximo histórico junto con precios al consumidor de la carne de res y el consumo per cápita en una marcada tendencia a la baja, estas preguntas adquieren una relevancia singular. La única certeza que se puede atribuir a la industria de la carne de bovino en el futuro mediato es la incertidumbre. Históricamente la actividad ganadera ha implementado prácticas a favor de una reducción de su impacto negativo en el ambiente por unidad de producto. Mayor atención deberá ponerse en la disminución de pérdidas a lo largo de toda la cadena, con lo que se apoyará en su sustentabilidad. A final de cuentas, un futuro sustentable de la industria de la carne de bovino no está garantizado, pero como lo muestra su comportamiento pasado, la industria tiene la enorme capacidad de adaptarse y evolucionar ante los retos de hoy, lo que da pie a contemplar un futuro optimista

    Construction and Operation of a Ventilated Hood System for Measuring Greenhouse Gas and Volatile Organic Compound Emissions from Cattle

    No full text
    Recent interest in greenhouse gas emissions from ruminants, such as cattle, has spawned a need for affordable, precise, and accurate methods for the measurement of gaseous emissions arising from enteric fermentation. A new head hood system for cattle designed to capture and quantify emissions was recently developed at the University of California, Davis. The system consists of two head hoods, two vacuum pumps, and an instrumentation cabinet housing the required data collection equipment. This system has the capability of measuring carbon dioxide, methane, ethanol, methanol, water vapor, nitrous oxide, acetic acid emissions and oxygen consumption in real-time. A unique aspect of the hoods is the front, back, and sides are made of clear polycarbonate sheeting allowing the cattle a full range of vision during gas sampling. Recovery rates for these slightly negative pressure chambers were measured ranging from 97.6 to 99.3 percent. This system can capture high quality data for use in improving emission inventories and evaluating gaseous emission mitigation strategies

    Interleukin-1 Receptor Signaling Is Required To Overcome the Effects of Pertussis Toxin and for Efficient Infection- or Vaccination-Induced Immunity against Bordetella pertussisâ–¿

    No full text
    Interleukin-1 receptor-deficient (IL-1R−/−) mice are healthy despite being colonized by commensal microbes but are defective in defenses against specific pathogens, suggesting that IL-1R-mediated effects contribute to immune responses against specific pathogenic mechanisms. To better define the role of IL-1R in immunity to respiratory infections, we challenged IL-1R−/− mice with Bordetella pertussis and Bordetella parapertussis, the causative agents of whooping cough. Following inoculation with B. pertussis, but not B. parapertussis, IL-1R−/− mice showed elevated bacterial numbers and more extensive inflammatory pathology than wild-type mice. Acellular B. pertussis vaccines were not efficiently protective against B. pertussis in IL-1R−/− mice. B. pertussis-stimulated dendritic cells from IL-1R−/− mice produced higher levels of tumor necrosis factor alpha (TNF-α) and IL-6 than wild-type cells. Moreover, elevated levels of gamma interferon (IFN-γ) and TNF-α but lower levels of IL-10 were detected during B. pertussis infection in IL-1R−/− mice. Since B. parapertussis did not cause severe disease in IL-1R−/− mice, we hypothesized that the extreme requirement for IL-1R involves pertussis toxin (Ptx), which is expressed only by B. pertussis. An isogenic Ptx-deficient B. pertussis strain had only a modest phenotype in wild-type mice but was completely defective in causing lethal disease in IL-1R−/− mice, indicating that the particular virulence of B. pertussis in these mice requires Ptx. Ptx contributes to IL-1β induction by B. pertussis, which is involved in IL-10 induction through IL-1R signaling. IL-10 treatment reduced B. pertussis numbers in IL-1R−/− mice, suggesting that the lower IL-10 responses partially account for the uncontrolled inflammation and bacterial growth in these mice
    corecore