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Abstract

Biological responses to climate change are typically communicated in generalized terms such as poleward and
altitudinal range shifts, but adaptation efforts relevant to management decisions often require forecasts that
incorporate the interaction of multiple climatic and nonclimatic stressors at far smaller spatiotemporal scales. We
argue that the desire for generalizations has, ironically, contributed to the frequent conflation of weather with
climate, even within the scientific community. As a result, current predictions of ecological responses to climate
change, and the design of experiments to understand underlying mechanisms, are too often based on broad-scale
trends and averages that at a proximate level may have very little to do with the vulnerability of organisms and
ecosystems. The creation of biologically relevant metrics of environmental change that incorporate the physical
mechanisms by which climate trains patterns of weather, coupled with knowledge of how organisms and ecosystems
respond to these changes, can offer insight into which aspects of climate change may be most important to monitor
and predict. This approach also has the potential to enhance our ability to communicate impacts of climate change
to nonscientists and especially to stakeholders attempting to enact climate change adaptation policies.

Keywords: Climate adaptation, Communication, Ecological forecasting, Experimental design, Physiological ecology,
Mechanistic models, Scale, Species distribution modeling, Weather
“After some time, I realized that heterogeneity and
instability must not be considered as just a drawback
of field data to be neglected (‘averaged away’ or ‘seen
through by intuition’) or circumvented by retreating
into the laboratory because they were mere deviations
from the ‘typical’ or ‘representative’ case (or even
‘noise’). On the contrary, heterogeneity and/or
instability must be recognized as fundamental features
of a natural situation.”

-P.K. Den Boer (1968) Spreading the risk of
stabilization of animal numbers. Acta Biotheoretica
18:165–194.
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Understanding and predicting the impacts of global
climate change on natural, managed, and coupled socio-
ecological systems is one of the most pressing challenges
facing science today. The task is not an easy one. Spatial
and temporal variation in the distribution of climatic
and nonclimatic stressors often result in nonlinear (and
therefore highly complex) patterns [1]. Direct attribution
of observed changes to anthropogenic climate change is
also challenging [2], by and large due to the fact that cli-
mate change seldom acts in isolation when impacting
organisms and ecosystems [3,4]. Nevertheless, the scien-
tific literature is replete with studies that demonstrate
the very real effects of changing climatic conditions on
species’ distributions, phenology, and patterns of growth,
productivity, and reproduction [5-7].
Much of the progress to date made in evaluating the

ongoing impacts of climate change has been accom-
plished by stepping back and evaluating general patterns.
Methods such as meta-analysis have served as useful
tools for demonstrating broad-scale trends in how eco-
systems are responding to environmental change and as
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a framework for estimating the magnitude of future im-
pacts. As a result of these analyses, it is now generally
accepted that climate change is driving poleward and
altitudinal range shifts in species distributions as envir-
onmental conditions at the equatorial or lower altitud-
inal edges of a species’ range exceed their physiological
tolerances and conditions at poleward or upper altitud-
inal limits become tolerable [5,6]. Similar generalities are
being used to inform empirical work; Intergovernmental
Panel on Climate Change (IPCC) predictions such as ex-
pected increases in average sea surface temperatures
(e.g., 2°C–4°C) and future pCO2 levels (e.g., 1,000 ppm)
have provided guidance for comparative biological ex-
periments, contrasting species responses under current
and future environmental conditions [8]. Much has
been learned from such approaches. But to what extent
has our quest to seek generality, perhaps driven at least
in part by the perceived need to communicate complex
scenarios in a simplified manner, potentially clouded
our interpretation and expectations of what we observe
and influenced how we conduct experiments to quan-
tify those effects?
Here, we argue that while generalizations and overall

trends are useful heuristically, they frequently fail to
match the scale of ecological responses that are driven
by spatial and temporal variability in both climate-
related stressors and the nonclimatic factors with which
they interact. While such a statement may seem axio-
matic or even “common sense”, it is often strikingly at
odds with the way that experiments are designed and
with how we communicate climate change impacts to
nonscientists, especially to stakeholders attempting to
proactively manage natural systems experiencing on-
going impacts. For example, climatic trends (30+ year
trends in average surface temperature and carbon diox-
ide concentrations) are increasingly being used to pro-
ject organismal physiology and species’ range limits [9].
It is clear, however, that decadal-scale increases in mean
temperature (i.e., climate) are not the proximate drivers
of performance and survival at organismal scales and
thus ultimately are not the cause of observed changes.
Instead, organismal vulnerability, including mortality,
growth, and reproduction—the underlying drivers of
ecosystem function and species distributions—are af-
fected by shorter-term variation in environmental con-
ditions (i.e., weather), including extreme events [10,11]
that are implicit in climatic predictions. In many cases,
because of the high temporal and spatial heterogeneity
in climatic factors such as air and water temperature,
many locations are already experiencing weather anom-
alies that far exceed the increases in mean temperature
projected far into the future. For example, in the Gulf
of Maine, summer sea temperatures in 2012 were 1°C–3°C
above the climatology for the previous three decades,
akin to temperatures forecast for 2100 [12]. Thus, using
physical data and model outputs that reduce environmen-
tal change to simplified trends such as annual or decadal
means, or making assumptions such as poleward and
altitudinal range shifts, is likely to be misleading when
designing or implementing climate adaptation strategies.
Ironically, such reliance on generalized average changes

may have impeded our ability to communicate climate
change impacts to nonscientists, since deviations from
these predicted standards may be misinterpreted as
counter-evidence to “global warming.” Even scientists are
seduced by such generalizations, with increasing numbers
of physiological and ecological studies using global cli-
matic means to inform experimental design. To avoid
these potential misinterpretations, we argue that our ex-
pectations of how climate will likely impact commercially
and ecologically important species should, whenever pos-
sible, be based on physiologically and ecologically relevant
metrics over appropriate spatial and temporal scales
[13-15]. Such predictions should emphasize how altered
weather patterns interact with nonclimatic stressors to
drive local-scale processes [4] and acknowledge the often
overriding importance of biology—including physiological
acclimatization and adaptation to local environments—in
determining patterns of vulnerability and response over
multiple spatial and temporal scales. Specifically, we ex-
plore how a focus on explicit mechanisms by which envir-
onmental change affects biological systems can provide
insight into what we truly should expect to observe in na-
ture and offers a valuable tool for understanding which as-
pects of climate change are most important to monitor
and predict. We explore these concepts through three
lenses: (a) the design of experimental protocols to under-
stand the mechanisms by which climate change affects or-
ganisms and ecosystems, (b) the development of climate
adaptation strategies, and (c) the potential effects of rhet-
oric on the effective communication of the impacts of cli-
mate change to nonscientific audiences.

Implications for experimental design
Global climate change is now the backdrop against which
all biological, ecological, and socio-ecological interactions
occur. There is thus enormous interest in predicting “win-
ners” and “losers” among commercially, ecologically, and
culturally important species [4,16], and the subsequent
impacts on patterns of biodiversity [17]. A key and often
overlooked consideration is that organisms (including
humans) are not directly affected by climate, per se, but
rather more proximately are affected by weather, which ul-
timately is trained by climate (but see [18-20]). Similar
discussions of the application of climatic indices such as
the El Niño Southern Oscillation (ENSO) provide some
insight as to why this is the case [21]. Hallett et al. [22],
for example, showed that, superficially, the North Atlantic
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Oscillation (NAO) displayed better correlations with vari-
ation in the population dynamics of Soay sheep than did
local weather patterns. However, when details regarding
the roles of factors such as competition for food and the
history of extreme events were included in a process-
based approach, weather emerged as a stronger predictor
of the sheep’s population patterns. Like NAO and ENSO,
“climate” is a useful indicator of broad-scale changes in
patterns that impact organisms and ecosystems. However,
the mechanisms that actually affect biological processes
are inherently implicit and may significantly covary with
one another [23]. For example, average seasonal tempera-
tures may be correlated with rare extremes that actually
cause damage, but these correlations may not always hold.
Several recent discussions have explored the issue of “no
analog” communities and have emphasized that correla-
tive niche models based on existing patterns may fail to
accurately capture limits under future, novel climatic con-
ditions [24,25]. An explicit focus on the weather patterns
likely to occur under future climate scenarios [26] coupled
with knowledge of which factors most affect organisms
[14] will provide insights into this dilemma.
For example, many studies have shown the importance

of chronic, sublethal exposures that may cumulatively
lead to mortality or reproductive failure, for example,
due to energetic limitation [27,28]. The time history of
exposure can be also critical in determining the degree
to which organisms are able to acclimatize to environ-
mental variations [15,29], and over longer time scales to
how populations can potentially adapt [30]. For example,
the rate of temperature change imposed on animals dur-
ing physiological experiments can significantly alter the
biological responses observed [15]. The importance of
rare, but extreme, events on species’ range distributions
can also be overlooked. For example, mortality of inter-
tidal species from an exceptionally cold winter in 1962–
1963 in Europe caused major southward shifts in many
species’ northern range boundaries. Because some spe-
cies have not fully recovered their former ranges [11],
contemporary weather conditions may be decoupled
from present-day range edges, and weather conditions
over the last 50 years may thus offer little or no informa-
tion on the determinants of current range boundaries.
Ontogenetic changes can also impact our predictions, as
sensitivity to environmental change can vary between
different life history stages so that populations can be
particularly sensitive to conditions that occur for only a
portion or particular life history stage of an organism’s
lifetime [31,32].
Considering the roles of acclimation and local adapta-

tion in predictions of climate change impacts is becom-
ing increasingly recognized and has emphasized how
limiting factors such as critical thermal maxima can
vary throughout a species’ range. For example, it is now
widely recognized that bleaching in corals occurs as a
function of ‘degree-weeks’ over a threshold that is set
by local climatic conditions [33] rather than by some
fixed temperature. In contrast, many polar species show
poor ability to acclimate to warming temperatures [29],
and some species with relatively high rates of larval dis-
persal (and thus high rates of genetic exchange) like-
wise show apparently little geographic variation in
thermal tolerance [34]. Increasing emphasis is also be-
ing placed on the potential role of local adaptation as a
result of natural selection, where populations become
composed of more tolerant individuals [30]. Yet, while
evidence of local adaptation has been shown to occur
in some species [35], where such adaptation has not oc-
curred, “fringe” populations with low levels of genetic
variance have been shown to be particularly susceptible
to environmental change [36].
Assessing the impacts of environmental change can fur-

ther be complicated by extremely high rates of temporal
and spatial heterogeneity in factors such as temperature.
Most organisms on Earth are ectothermic; their body tem-
peratures change with varying ambient conditions and
thus so does their physiological performance when rates
of change exceed their ability to acclimatize (Figure 1).
Thus, in any environment with appreciable variation, or-
ganisms spend very little time exposed to “average” condi-
tions. Given nonlinearities in thermal responses, the
physiological response of an animal exposed to fluctua-
tions in body temperature between 10°C and 35°C, for ex-
ample, cannot be predicted using constant conditions of
17.5°C (Figure 1). This disparity is akin to other mathem-
atical formalizations such as Jensen’s Inequality [37] and is
often overlooked when working with natural systems,
which are inherently variable and nonlinear [38].
Perhaps most importantly, stressors most closely re-

lated to climate change such as temperature, rainfall,
and ocean acidification frequently interact with one an-
other and with other nonclimatic factors such as food
availability (which can enhance resilience to thermal
stress), access to refugia (which can reduce thermal stress),
and pollution [4]. For example, where increased metabolic
demands can be met by ample food supply, populations
often do not demonstrate otherwise predicted negative
responses to stressors such as ocean acidification and
extreme temperatures [39]. In contrast, exposure to
stressors such as ocean acidification can increase sus-
ceptibility to mortality at lower temperatures than pre-
dicted by thermal performance curves alone [40].
Similarly, populations that are already depressed due to
overharvesting are more likely to be affected by envir-
onmental change in part because they have reduced re-
productive output and therefore limited capacity for
genetic and/or phenotypic variation [41]. In some cases,
the most biologically relevant aspect of weather is the
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Figure 1 Translation of environmental variation into physiological performance. (a) Example of a time series of body temperatures measured in
a rocky intertidal mussel. When multiplied by a (b) thermal performance curve, (c) performance over time can be estimated. Almost all physiological
processes are affected by temperature, and organismal impacts ultimately drive ecological and biogeographic responses. Most organisms are
ectothermic (i.e., retain no appreciable metabolic heat) and many have body temperatures that fluctuate with environmental conditions; in some
environments, daily ranges of 20°C or more are not uncommon. The relationship between body temperature and ecophysiological metrics or traits
such as growth and ability to forage can be described by a thermal performance curve, which is often left-skewed. Such curves (b) can describe not
only thermal optima and lethal limits (solid lines) but also sublethal limits (dashed lines) that can be exceeded for short periods but after
chronic exposure can lead to mortality. Because the relationship between body temperature (which can differ from environmental temperature) and
performance is nonlinear, average performance (blue line in c) cannot be calculated from average temperatures (red lines in a and c) in any eurythermal
environment. Notably, by smoothing input data, not only are the potentially lethal effects of extreme temperature neglected but also incorrect estimates of
growth and reproduction or the cumulative effects of stress on mortality can ensue.
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temporal coincidence of stressors, such as rainfall and
extreme temperatures [42,43]. Furthermore, environ-
mental change can affect species interaction strengths
[44,45], so that differential impacts on predators and
prey can lead to counterintuitive responses of species
in ecosystems [3].
The complex relationship between ecological patterns

and the frequency, magnitude, and time history of vari-
ation in multiple environmental factors thus poses a
considerable challenge to niche models used to predict
future ecological responses [46,47]. The current litera-
ture abounds with discussions about process-based vs.
statistical ecological forecasting approaches [48], and
confidence in our ability to predict species responses
under future conditions [25]. At issue is the underlying
assumption of space for time substitution, i.e., that
models constructed from contemporary observations
can effectively predict responses under future, often
novel, environments [49] and that environmental vari-
ability remains constant, regardless of the time over
which it is measured [50]. A recent example of model
failure in space is instructive as to why space for time
substitution cannot always be assumed. Jones et al. [51]
constructed a process-based niche model based on ex-
posure to lethal temperatures that accurately predicted
the distribution of intertidal mussels on the East coast
of North America. When the model was applied to the
same species on the Atlantic coast of Europe, however,
it failed to predict observed distributions. Instead, it
was shown [28] that range limits on this coast are likely
set not by lethal exposures, but rather by energetic lim-
itations resulting from chronic exposure to sublethal
conditions (Figure 1b). Thus, while rare extremes are
important [13], so are other drivers, especially when cli-
matic factors interact with one another [43] and with
nonclimatic stressors [4]. Hence, changes through time
in one location are not always observed in another.
Similarly, niche models developed based on current ob-
servations may not be effective under future, novel con-
ditions if they are not fully described by current
climates and if they fail to account for all components
of a species niche space [24]. In other words, we run
the risk of fitting data that extend beyond the limits of
the datasets from which they were constructed, unless
we incorporate information describing the impacts of
novel climatic conditions on organisms. Such informa-
tion may be derived from controlled experiments, such
as those described above; however, caution should be
exercised so as not to over-extrapolate from such con-
trolled approaches.
Progress is definitely being made in considering these is-

sues, such as the incorporation of “weather” into “climate”
predictions [52] using techniques such as stochastic wea-
ther generators [53] to account for predicted variability in
environmental conditions [54], and particularly the inclu-
sion of return time of extreme events [42,55]. Further,
some species distribution models have included physio-
logical traits [46,56]. Nevertheless, a host of physiological
and ecological studies continue to compare levels of
growth, survival, and reproduction of organisms under
contemporary conditions against experimental treat-
ments designed to represent “future” scenarios (e.g.,
present day +2°C), using climatic means [57-59]. These
studies are useful in the same way as systematic sur-
veys, in that they provide yardsticks to gauge the sensi-
tivity of organisms to changes in their environment.
Their potential applicability to observable patterns in na-
ture, however, is difficult to assess (Figure 1). In some
cases, experiments have incorporated estimates of vari-
ability in physical drivers [60], but most are based on con-
temporary and projected means, in some cases seasonal
or monthly, but often annual values [61].
A corollary of this argument is that the physical models

used to project future ecological responses at spatial and
temporal scales relevant to management decisions need to
effectively capture biologically relevant parameters [47,62].
Specifically, climate models should not be applied in a
context that is divorced from how they were originally
evaluated, and vice versa. While we often focus on central
tendencies, for example, by “smoothing” data, it may often
be the case that what is considered as “noise” may in fact
be the most important driver of biological responses [22].
Thus, annual mean air or sea surface temperatures are
useful in ecological forecasts or hindcasts only to the
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extent that these variables reflect underlying drivers of eco-
logical responses, in precisely the same way that a climatic
index such as NAO or ENSO is indicative of underlying
weather that is the proximate driver of biological response
[22]. For example, physical models tuned to maximize skill
(i.e., normalized model error variance such as root mean
square error [55], Figure 2) using central tendencies (i.e.,
average conditions) are less useful when applied to bio-
logical questions than those that have high skill in predict-
ing the frequency and return time of extreme events when
the latter metrics are most important for ecological re-
sponses [11,55]. While a recent emphasis on the import-
ance of the velocity of change in setting distributions [63]
is potentially one step closer to mechanism, it too is likely
only an indirect indicator of the processes that actually
affect organisms [22].
The importance of considering relevant scales of envir-

onmental variability, and of the influence of multiple
stressors, is not novel and has been addressed by previ-
ous authors. Yet—and this is among our major points—
it is seemingly at odds with the way that many “climate
change experiments” are conducted [4]. It is tempting to
dismiss these issues as merely differences in “resolution”
or the scale of the question being addressed, for ex-
ample, those asked by a biographer as compared to
those explored by a physiologist. However, a focus on
underlying drivers (i.e., weather) can potentially yield
substantially different predictions than ones based on
large-scale averages, even over broad geographic and
temporal scales. The inclusion of weather in the climate
models applied to ecological experiments may be crucial
for several reasons [64]. Most climate scenarios forecast
an increase in variability, so that the chance of exceeding
thresholds such as critical thermal maxima or minima is
likely to increase. Although organisms may have the
metabolic plasticity to acclimate to small changes in
temperature, one extreme event, even lasting one or sev-
eral days, can cause significant mortality within popula-
tions [11]. An increasing number of studies compare
lethal tolerances of organisms against projected extremes
in temperatures [42]. To be effective, however, models
incorporating lethal effects must use inputs from phys-
ical climate models that are specifically designed to ac-
curately capture those extreme events (c.f. mean
temperatures).
Our point here is not that we should attempt to ac-

count for every possible combination of environmental
conditions when forecasting ecological responses to cli-
mate change. There will never be enough resources to
assess all potentially relevant combinations of environ-
mental conditions, for all species, nor would such a
compendium necessarily be useful given uncertainty in
future weather. Rather, our central argument is that
what comprises an appropriate test of model skill, for
example models of temperature, rainfall and ocean pH,
to a large extent will depend on the application to which
the model is applied (Figure 2). Given the large time
scales involved in climate modeling, our argument pri-
marily applies to how such models are validated today
using nowcasting and hindcasting methods but have dir-
ect relevance for our confidence in space for time substi-
tution approaches that are the hallmark of ecological
forecasts. Particularly, when outputs from physical models
are applied to biological questions, or when ecological
models are applied to predict socioeconomic impacts, an
understanding of the assumptions and validations of the
model are critical, yet rarely are these communicated.
Such considerations may be especially important when
coupled physical-ecological model predictions are used in
climate adaptation strategies.

Application to climate adaptation strategies
It is now widely acknowledged that the impacts of past
and present greenhouse gas emissions on the global cli-
mate will persist well into the future due to earth-
atmosphere feedbacks and inertia in the climate system
[65]. While mitigation to reduce greenhouse gas emis-
sions in an attempt to achieve climate neutrality and to
reduce future climate impacts is still a high priority, both
reactive and proactive adaptation strategies need to be
implemented to reduce the adverse impacts of impend-
ing climate change. A combined mitigation-adaptation
management approach requires decision-making within
a framework of considerable uncertainty with respect to
future climatic states. Climate projections and forecasts
of the response of natural systems to future climate
change are thus frequently used to inform management
plans.
The goals of climate management strategies are to en-

hance resilience of natural and human-managed popula-
tions to environmental stress and to enhance ecosystem
services provided by intact communities, including in
some cases rehabilitation of damaged ecosystems [66].
Successful implementation of such strategies can, how-
ever, be hampered by a narrow focus on broad-scale
generalizations such as those described above [62]. For
example, as explored in the previous section, predicted
vulnerability of key species and ecosystems is often
based on annual mean conditions [61,67], despite the
fact that such simplified predictive frameworks may not
capture the interactive nature of multiple stressors, or
the overriding impacts of short-term weather and non-
climatic stressors [9,62].
A useful analogy to these assumptions is research on

the efficacy of pharmaceuticals. In this field, broad-scale
trends in the effectiveness of various treatment options
are often demonstrated using meta-analysis of clinical
trials. The purpose of these studies, like those exploring
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Figure 2 Tests of model skill using different metrics. (a) Tests of
model skill compare predicted (modeled) variables against field
observations, and common metrics are goodness of fit (R2) and root-
mean-square error (RMSE). “Messy” (high frequency) data (a) are often
smoothed using averages (b) which are then used to assess model
skill. In this example, two metrics of skill are presented, one based on
monthly averages (b) and one using monthly maxima (c). The two
tests give widely divergent estimates of model performance, as
indicated by the test statistics, but actual model skill will depend
on which of these metrics (average or extreme) most accurately
represents the driver affecting the organisms being modeled. In
order to have confidence in a model’s ability to predict biological
response, it must be tested against metrics that have been shown
to be biologically meaningful and not simply covariates of those
that are. In many cases, commonly used parameters such as annual
means may have little biological relevance, as the degree to which
they are correlated with biologically meaningful values may not apply
under future, novel climatic conditions.
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climate change impacts, is to tease apart the relative ef-
fects of a particular treatment regimen from the many
other potentially confounding factors such as age, nutri-
tional status, and other health issues. In the case of
pharmaceuticals, the goal is to demonstrate an effect of
the treatment; in climate research, it is to detect a fin-
gerprint of climate change impacts. In both cases, these
approaches are valuable in detecting whether such rela-
tionships exist. However, as emphasized by recent re-
views in the medical literature [68], the results of such
meta-analyses need to be interpreted with extreme cau-
tion when treating actual patients, as individual variabil-
ity and health history can lead to outcomes that are
contrary to trends in the general population. The take-
home message from this is that actual patient care is (or at
least should be) highly individualized, and patient treat-
ment should not be based on the results of meta-analysis
alone without also considering the patient’s history, risk
factors, and other medications being prescribed.
The application of meta-analysis and other systematic

syntheses and reviews to explore climate change im-
pacts is similar in that trends in “clinical trials” (field
observations) are considered in aggregate to detect the
influence of the overall “climate signal” from other
drivers. In contrast to pharmaceutical studies, seldom is
variability in space and time built into our discussions
of climate impacts, at least at scales smaller than the
regional level (but see [62,69]). While this broad-brush
approach was initially appropriate because of a lack of
high-resolution data, the present-day availability of en-
vironmental records has dramatically improved the
temporal and spatial resolution of data which can be in-
corporated into modern analyses [69,70]. Therefore,
while it may still be appropriate to use meta-analysis to
identify broad trends in some situations, we are now
able to incorporate “patient-specific” information into
climate adaptation strategies at regional or potentially
even local scales using downscaled model predictions
[71,72] coupled with high-resolution environmental
data [73] and measures of nonclimatic stressors (e.g., eu-
trophication). In other words, we can now focus on com-
munities and populations rather than species [30,74].
While such an approach is likely not appropriate for all
applications, it may be particularly relevant for examin-
ation of particular species of interest such as threatened
and/or endangered species [75], commercially important
species [76,77], disease-causing organisms [78], and key-
stone or structuring species that have cascading effects on
ecosystems [79].
An example of the need for such an approach is evident

in spatial planning for protected areas. The number of
documented cases of poleward range shifts in marine eco-
systems is increasing, and such analyses are often applied
over continental scales and may cover both high- and
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low-latitude range boundaries. While potentially of use at
the extreme range edges of a particular species, assump-
tions of a generalized poleward migration are less useful
when exploring populations further from a species’ distri-
butional limits or when range edges of interacting species
do not occur at the same location. Recent models that in-
corporate population dynamics illustrate this point, dem-
onstrating that within the majority of a species’ range,
extreme temperatures may be less important than local-
scale ecological factors and chronic stress in determining
abundance [77]. Subsequently, assumptions based on
poleward range shifts do not provide sufficient informa-
tion to accurately predict what will happen at spatial or
temporal scales appropriate for management or adapta-
tion strategies [69,75]. For instance, habitat availability
dramatically alters the ability of species to expand at their
poleward range edge, especially if they have limited disper-
sal ability [80]. The importance of local and regional
drivers such as wave splash and the timing of the tides is
known to create geographic mosaics in stress in intertidal
ecosystems, so that physiological stress is not well corre-
lated with latitude for some species [1,36,81]. Significant
genetic structural differences can be created or at least in-
fluenced by local and regional conditions [36]. For ex-
ample, substrate type and discharge from the Yangtze
River drive gene flow and contemporary phylogeographic
distribution of rocky intertidal species in China. These
findings suggest that climate change, land reclamation,
and dam construction along the Yangtze River will dra-
matically affect the phylogenetic distribution of many spe-
cies along the China coast [82]. Similar heterogeneity has
been shown in treeline ecosystems as a result of microto-
pography [83]. The perception that abundances are high-
est, and levels of stress lowest, in the middle of species
ranges may not, therefore, be a safe assumption [84].
A more tailored type of assessment provides an oppor-

tunity to potentially ameliorate the impacts of climate
change on the “patient” (here, population) by reducing
stress from nonclimatic factors such as overharvesting
and pollution [40,75]. Just as planning for protected
areas requires information of local conditions, informa-
tion on other stressors such as pollution and commercial
farming/harvesting also needs to be incorporated [12].
Successful planning can be significantly augmented by
an understanding of the mechanisms underlying such
processes [12]. For example, nutrient pollution in oligo-
trophic coastal waters can disproportionately increase
the likelihood that a system will transition to a de-
graded state by altering competitive hierarchies, often
at the expense of foundation species [40]. Any efforts
to increase the survival of organisms in such regions
may thus lie in reducing nutrient loading [85]. In con-
trast, increased nutrients may improve resilience of
some commercially important species, such as filter
feeding bivalves, as increased food supply can enhance
thermal tolerance [86]. Knowing which strategy to fol-
low requires specific knowledge of environmental con-
ditions relative to a species’ tolerances, in other words,
a complete understanding of its fundamental niche
space [87]. Similarly, the effects of increasing temperature
can have differential impacts depending on where organ-
isms live relative to their thermal tolerances and optima.
Thus, for habitats where organisms live at temperatures
below their optima (Figure 1) (Additional file 1), small in-
creases in temperature may initially stimulate growth and
reproduction, whereas at sites where animals live at or
above their optimum, increasing temperatures will have
the opposite effect [4]. In order to predict how a species’
performance will likely change in coming decades, it is im-
portant to understand what the tolerances of organisms
are at the location of interest, especially in systems
where stressors such as temperature do not correlate
well with latitude [88] or altitude [89]. Such informa-
tion cannot be obtained without a mechanistic know-
ledge of how species of interest are affected by local
environmental conditions [46,90].

Climate change communication
Humans, like other organisms, are affected by weather ra-
ther than by climate per se, but the conflation of weather
and climate is manifest in public discourse. Considerable
evidence from public opinion polls and cognitive studies
suggests that people’s perception of climate change is
shaped significantly through their experience of weather
[91]. Consistent with the concept of “shifting baselines”
[92] the “norm” against which most people unconsciously
compare observed climatic deviations derives from short-
term, personal experience. Thus, nonscientists can errone-
ously view interannual variability, for example, a relatively
cool year, as evidence against global climate change [93].
Long-term trends in climate that are generally understood
only through examination of data that span decades, cen-
turies, and millennia are thus difficult to convey to the
public, whose mental models may differ from those of sci-
entists and others accustomed to assimilating data [91].
Accordingly, controversy has emerged over whether or

not direct attribution of extreme events to anthropogenic
climate change is advisable [2] or even possible [94]. Ef-
forts to distinguish climate from weather can prove to be
a double-edged sword. An opinion poll following disas-
trous weather events in 2012 in the U.S. suggested a dra-
matic shift in public perception of the risks of climate
change [95]. More recent polling suggests that the up-
swing in interest in climate change impacts may have been
short lived, likely in part due to a colder-than-average win-
ter in 2013 [93]. Conversely, a study following the same
period of severe cold weather in the UK showed that a
large majority of British citizens surveyed saw such events
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as providing positive evidence for climate change due to
people conceptualizing these extreme or ‘unnatural’ wea-
ther events as resulting from climate change [96].
We postulate that these dividing lines may occur, at least

in part, as a function of the way scientists discuss climate
impacts, which is often in generalities [96]. This is nicely
illustrated by a study by Crimmins et al. [97] who demon-
strated that increasing temperatures coupled with increas-
ing rainfall over a 75-year period led to an altitudinal
downshift in the distributions of 64 species of plants. The
way in which increased water availability can counteract
increased temperatures, resulting in plants being able to
live at lower altitudes, makes biological sense, yet the
study was viewed by skeptics as a challenge to assump-
tions and predictions made by the IPCC [98]. In part, this
likely reflects a poor public understanding of how climate
change operates and manifests, but also the creation of
misconceptions as a result of how the expectations of cli-
mate change are portrayed to nonscientists. Working
Group 2 of the 2007 IPCC report, for example, presented
a table (Table 1.9) documenting “evidence of significant
recent range shifts polewards and to higher elevations”,
the strong implication being that such results were evi-
dence of biogeographic shift in response to climate
change. What goes unsaid in this instance is that such
observed shifts are driven by sufficiently large changes
in biologically meaningful environmental conditions. It
is not difficult, therefore, to see how contrasting results
such as those presented by Crimmins et al. [97] may be
misinterpreted as prima facie evidence against the im-
portance of environmental change. Crimmins et al.’s
findings [97] are in fact not evidence against climate
change impacting species distributions; they simply rep-
resent the interaction of multiple environmental condi-
tions and, again, highlight the need to incorporate
species-specific, local conditions into our predictions.
Interestingly, this study also elicited several heated re-
sponses in the pages of Science, most criticizing
whether Crimmins et al.’s results could be generalized
to other species and locations [99].
Research from the psychological literature offers insight

into the seeming disconnect between the scientific com-
munity and the general public. Goodwin and Dahlstrom
[100] explored the levels of trust between climate scien-
tists and their lay audiences, and suggested that trust was
established, at least in part, when communicators make
themselves vulnerable to their audiences by offering pre-
dictions that may in the end be proven wrong and by
accepting the consequences of these incorrect predictions.
On this premise, weather forecasters are highly trusted,
not because they are flawless in their predictions, but be-
cause they make predictions on a daily basis that are then
tested empirically by their lay audience. On average, wea-
ther forecasters’ predictions are within an acceptable level
of error, and trust is established with faithful viewers
[101]. This provides a useful contrast with the current way
that scientists typically communicate ongoing climate
change impacts. For example, any post hoc explanations of
the rationale behind the results of the aforementioned
study by Crimmins et al. [97] were likely viewed by skep-
tics as scientists “making excuses”. It can be argued that
the expectation of upslope range shifts was the result of
predictions based on generalizations, rather than on the
specific conditions at the study sites. The direct analogy to
this presentation of climate change impacts as a series of
average trends would be a weather forecaster repeating
the same forecast nightly over the course of a month, pre-
dicting mild temperatures and 1 mm of rain, i.e., average
conditions for that time of year. On average, the forecast
may indeed be correct, but days where the predictions
were clearly wrong would quickly undermine the public’s
trust simply as a result of how the predictions were pre-
sented, i.e., that no concession was made for variability.
Communications research also suggests a need to weave

the impacts of climate change into a broader context that
includes nonclimatic factors. Lejano et al. [102] propose
that science communication needs to better incorporate
the use of narrative and everyday experiences. The authors
argue that public discourse regarding climate and weather
cannot be isolated from other issues that impact society.
This approach is not unlike that taken by the US Center
for Naval Analyses [103], which considers climate change
not as an independent threat, but rather as a threat multi-
plier for political and social instability in volatile regions of
the world. A compatible argument was made by Hansen
et al. [94] who advocated for an approach that considers
climate change as essentially “loading the dice”. Hansen
et al. [94] argue that scientists should not claim that on-
going climate change is the cause of observed impacts, per
se, but rather that climate change increases the chances of
the impact happening to a degree that it likely would not
have occurred without changing climatic conditions. An
approach along these lines has the potential to arm non-
scientists with the knowledge to better understand the
role that climate plays in driving weather and the subse-
quent ways in which weather interacts with other factors.

Conclusions: Where do we go from here?
To move forward, we need frameworks that better ac-
count for the seemingly idiosyncratic responses that re-
sult from local environmental conditions and the often
overarching importance of biological processes. Such
approaches may superficially appear to be at odds with
the search for generalization that science often seeks.
However, a focus on the mechanisms by which organ-
isms are affected by climatic and nonclimatic factors,
and how such impacts ultimately translate into eco-
logical responses that impact humans, provides a way
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forward. For example, a mechanistic framework based
on the relative importance of temperature and water
availability in driving plant survival could potentially
explain both downslope and upslope shifts in distribu-
tion; here, the generalization is based on the process,
not the outcome.
Thus, while it is unrealistic to experimentally evaluate

the endless combinations of stressors on countless spe-
cies, such an exhaustive survey in the end may not be
needed. Instead, a better understanding of mechanism
can point to vulnerabilities in organisms and ecosystems,
for example, conditions that lead to the extirpation of
keystone or habitat-forming species, or declines in eco-
system services [79]. More importantly, this viewpoint
acknowledges that at some level, responses of ecosys-
tems are inherently variable and therefore difficult to
predict with high levels of confidence. While such un-
certainties can be misconstrued as an excuse not to act,
the success of entities such as the insurance industry
suggests that action can be prompted when stakeholders
have a realistic estimate not only of the likelihood of ex-
treme events but also the costs of inaction [104,105]. By
more deliberately uniting explorations of the ecological
and socio-ecological implications of physical change and,
in particular, by testing our models using metrics and in-
dicators based on the questions to which they are ap-
plied, we can enhance communication not only among
climate researchers but also with the general public.

Additional file

Additional file 1: Animation showing relationship between body
temperature and thermal performance over time. Many ectothermic
organisms experience rapidly fluctuating body temperatures, even over
the course of the day. Since acclimation cannot compensate for these
rapid changes, physiological performance can also vary radically over
short time periods. Average environmental conditions are thus frequently
poor indicators of physiological performance.
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