114 research outputs found

    A Coherent RC Circuit

    Full text link
    We review the first experiment on dynamic transport in a phase-coherent quantum conductor. In our discussion, we highlight the use of time-dependent transport as a means of gaining insight into charge relaxation on a mesoscopic scale. For this purpose, we studied the ac conductance of a model quantum conductor, i.e. the quantum RC circuit. Prior to our experimental work, M. B\"{u}ttiker, H. Thomas and A. Pr\^{e}tre first worked on dynamic mesoscopic transport in the 1990s. They predicted that the mesoscopic RC circuit can be described by a quantum capacitance related to the density of states in the capacitor and a constant charge relaxation resistance value equal to half of the resistance quantum h/2e^2, when a single mode is transmitted between the capacitance and a reservoir. By applying a microwave excitation to a gate located on top of a coherent submicronic quantum dot that is coupled to a reservoir, we validate this theoretical prediction on the ac conductance of the quantum RC circuit. Our study demonstrates that the ac conductance is directly related to the dwell time of electrons in the capacitor. Thereby, we observed a counterintuitive behavior of a quantum origin: as the transmission of the single conducting mode decreases, the resistance of the quantum RC circuit remains constant while the capacitance oscillates.Comment: 30 page

    Violation of Kirchhoff's Laws for a Coherent RC Circuit

    Get PDF
    What is the complex impedance of a fully coherent quantum resistance-capacitance (RC) circuit at GHz frequencies in which a resistor and a capacitor are connected in series? While Kirchhoff's laws predict addition of capacitor and resistor impedances, we report on observation of a different behavior. The resistance, here associated with charge relaxation, differs from the usual transport resistance given by the Landauer formula. In particular, for a single mode conductor, the charge relaxation resistance is half the resistance quantum, regardless of the transmission of the mode. The new mesoscopic effect reported here is relevant for the dynamical regime of all quantum devices

    The relaxation time of a chiral quantum R-L circuit

    Get PDF
    We report on the GHz complex admittance of a chiral one dimensional ballistic conductor formed by edge states in the quantum Hall regime. The circuit consists of a wide Hall bar (the inductor L) in series with a tunable resistor (R) formed by a quantum point contact. Electron interactions between edges are screened by a pair of side gates. Conductance steps are observed on both real and imaginary parts of the admittance. Remarkably, the phase of the admittance is transmission-independent. This shows that the relaxation time of a chiral R-L circuit is resistance independent. A current and charge conserving scattering theory is presented that accounts for this observation with a relaxation time given by the electronic transit time in the c cuit

    Dirac fermion reflector by ballistic graphene sawtooth-shaped npn junctions

    Full text link
    We have realized a Dirac fermion reflector in graphene by controlling the ballistic carrier trajectory in a sawtooth-shaped npn junction. When the carrier density in the inner p-region is much larger than that in the outer n-regions, the first straight np interface works as a collimator and the collimated ballistic carriers can be totally reflected at the second zigzag pn interface. We observed clear resistance enhancement around the np+n regime, which is in good agreement with the numerical simulation. The tunable reflectance of ballistic carriers could be an elementary and important step for realizing ultrahigh-mobility graphene field effect transistors utilizing Dirac fermion optics in the near future

    An On-Demand Coherent Single Electron Source

    Get PDF
    We report on the electron analog of the single photon gun. On demand single electron injection in a quantum conductor was obtained using a quantum dot connected to the conductor via a tunnel barrier. Electron emission is triggered by application of a potential step which compensates the dot charging energy. Depending on the barrier transparency the quantum emission time ranges from 0.1 to 10 nanoseconds. The single electron source should prove useful for the implementation of quantum bits in ballistic conductors. Additionally periodic sequences of single electron emission and absorption generate a quantized AC-current

    A high sensitivity ultra-low temperature RF conductance and noise measurement setup

    Full text link
    We report on the realization of a high sensitivity RF noise measurement scheme to study small current fluctuations of mesoscopic systems at milliKelvin temperatures. The setup relies on the combination of an interferometric ampli- fication scheme and a quarter-wave impedance transformer, allowing the mea- surement of noise power spectral densities with GHz bandwith up to five orders of magnitude below the amplifier noise floor. We simultaneously measure the high frequency conductance of the sample by derivating a portion of the signal to a microwave homodyne detection. We describe the principle of the setup, as well as its implementation and calibration. Finally, we show that our setup allows to fully characterize a subnanosecond on-demand single electron source. More generally, its sensitivity and bandwith make it suitable for applications manipulating single charges at GHz frequencies.Comment: The following article has been submitted to Review of Scientific Instrument

    Excitonic recombinations in hBN: from bulk to exfoliated layers

    Get PDF
    Hexagonal boron nitride (h-BN) and graphite are structurally similar but with very different properties. Their combination in graphene-based devices meets now a huge research focus, and it becomes particularly important to evaluate the role played by crystalline defects in them. In this work, the cathodoluminescence (CL) properties of hexagonal boron nitride crystallites are reported and compared to those of nanosheets mechanically exfoliated from them. First the link between the presence of structural defects and the recombination intensity of bound-excitons, the so-called D series, is confirmed. Low defective h-BN regions are further evidenced by CL spectral mapping (hyperspectral imaging), allowing us to observe new features in the near-band-edge region, tentatively attributed to phonon replica of exciton recombinations. Second the h-BN thickness was reduced down to six atomic layers, using mechanical exfoliation, as evidenced by atomic force microscopy. Even at these low thicknesses, the luminescence remains intense and exciton recombination energies are not strongly modified with respect to the bulk, as expected from theoretical calculations indicating extremely compact excitons in h-BN

    Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources

    Get PDF
    The on-demand emission of coherent and indistinguishable electrons by independent synchronized sources is a challenging task of quantum electronics, in particular regarding its application for quantum information processing. Using two independent on-demand electron sources, we trigger the emission of two single-electron wavepackets at different inputs of an electronic beamsplitter. Whereas classical particles would be randomly partitioned by the splitter, we observe two-particle interferences resulting from quantum exchange. Both electrons, emitted in indistinguishable wavepackets with synchronized arrival time on the splitter, exit in different outputs as recorded by the low frequency current noise. The demonstration of two-electron interference provides the possibility to manipulate coherent and indistinguishable single-electron wavepackets in quantum conductors.Comment: Science Express of January 24 201

    Klein-tunneling transistor with ballistic graphene

    Full text link
    Today the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistor in the ballistic regime gives access to the Klein tunneling physics and allows the realization of devices exploiting the optics-like behavior of Dirac Fermions (DF) as in the Vesalego lens or the Fabry P\'erot cavity. Here we propose a Klein tunneling transistor based on geometrical optics of DF. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of the transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using Non Equilibrium Green's Function(NEGF) simulation.Comment: 4 pages, 5 figure
    corecore