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What is the complex impedance of a fully coherent quantum resistance-capacitance (RC)circuit at GHz fre-
quencies in which a resistor and a capacitor are connected inseries? While Kirchhoff’s laws predict addition
of capacitor and resistor impedances, we report on observation of a different behavior. The resistance,here as-
sociated with charge relaxation, differs from the usual transport resistance given by the Landauer formula. In
particular, for a single mode conductor, the charge relaxation resistance is half the resistance quantum, regard-
less of the transmission of the mode. The new mesoscopic effect reported here is relevant for the dynamical
regime of all quantum devices.

For a classical circuit, Kirchhoff’s laws prescribe the
addition of resistances in series. Its failure has been a
central issue in developing our understanding of elec-
tronic transport in mesoscopic conductors. Indeed, co-
herent multiple electronic reflections between scatter-
ers in the conductor were found to make the conduc-
tance non-local [1, 2]. A new composition law of in-
dividual scatterer contribution to resistance was found
that led to the solution of the problem of electron local-
ization [3] and, later, to formulation of the electronic
conduction in terms of scattering of electronic waves
[4]. Nonadditivity of series resistances, or of parallel
conductances, nonlocal effects and negative four-point
resistances [5] have been observed in a series of trans-
port experiments at low temperature, where phase co-
herence extends over the mesoscopic scale [6, 7]. It
is generally accepted that the conductance of a phase-
coherent quantum conductor is given by the Landauer
formula and its generalization to multi-lead conduc-
tors [8], which relate the conductance to the transmis-
sion of electronic waves by the conductance quantum
e2/h. But, how far is this description robust at finite
frequency where conductance combines with nondissi-
pative circuit elements such as capacitors or inductors
? Are there significant departures from the dc result ?
The question is important, as recent advances in quan-
tum information highlight the need for fast manipula-
tion of quantum systems, in particular quantum con-
ductors. High frequency quantum transport has been
theoretically addressed, showing that a quantum RC
circuit displays discrepancies with its classical coun-
terpart [9, 10]. It was shown that a counter-intuitive
modification of the series resistance lead to the situa-
tion in which the resistance is no longer described by
the Landauer formula and does not depend on trans-
mission in a direct way [9, 10]. Instead it is directly
related to the dwell time of electrons in the capaci-
tor. Moreover, when the resistor transmits in a sin-
gle electronic mode, a constant resistance was found,
equal to the half-resistance quantumh/2e2, i.e., it was

not transmission-dependent. This resistance, modified
by the presence of the coherent capacitor, was termed
a ”charge-relaxation resistance” to distinguish it from
the usual dc resistance, which is sandwiched between
macroscopic reservoirs and described by the Landauer
formula. The quantum charge-relaxation resistance, as
well as its generalization in nonequilibrium systems, is
an important concept that can be applied to quantum
information. For example, it enters into the problem of
quantum-limited detection of charge qubits [11] [12],
in the study of high-frequency-charge quantum noise
[13, 14, 15], or in the study of dephasing of an elec-
tronic quantum interferometer [16]. In molecular elec-
tronics, the charge relaxation resistance is also relevant
to the THz frequency response of systems such as car-
bon nanotubes[17].

We report on the observation and quantitative mea-
surement of the quantum charge-relaxation resistance
in a coherent RC circuit realized in a two-dimensional
electron gas (2DEG) (see Fig.1A). The capacitor is
made of a macroscopic metallic electrode on top of
a 2DEG submicrometer dot defining the second elec-
trode. The resistor is a quantum point contact (QPC)
connecting the dot to a wide 2DEG macroscopic reser-
voir. We address the coherent regime in which elec-
trons emitted from the reservoir to the dot are backscat-
tered without loss of coherence. In this regime, we
have checked the prediction made in refs.[9, 10] that
the charge-relaxation resistance is not given by the
Landauer formula resistance but instead is constant and
equalsh/2e2, as the QPC transmission is varied. Note
that we consider here a spin-polarized regime and that
the factor1/2 is not the effect of spin, but a hallmark
of a charge-relaxation resistance. When coherence is
washed out by thermal broadening, the more conven-
tional regime pertaining to dc transport is recovered.
The present work differs from previous capacitance
measurements where, for spectroscopic purpose, the
dot reservoir coupling was weak and the ac transport
regime was incoherent [18, 19]. As a consequence,
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Figure 1: The quantum capacitor realized using a 2DEG (A)
and its equivalent circuit (B). The capacitor consists of a
metallic electrode (in gold) on top of a submicrometer 2DEG
quantum dot (in blue) defining the second electrode. The re-
sistor is a QPC linking the dot to a wide 2DEG reservoir (in
blue), itself connected to a metallic contact (dark gold). The
QPC voltageVG controls the number of electronic modes
and their transmission. The radio frequency voltageVac,
and eventually a dc voltageVdc, are applied to the counter-
electrode whereas the ac current, from which the complex
conductance is deduced, is collected at the ohmic contact.
As predicted by theory, the relaxation resistanceRq, which
enters the equivalent circuit for the coherent conductance,
is transmission-independent and equal to half the resistance
quantum. The capacitance is the serial combinationCµ of
the quantum and the geometrical capacitances (Cq andC re-
spectively).Cq is transmission-dependent and strongly mod-
ulated byVdc and/orVG. The combination ofRq and Cq

forms the impedance1/gq of the coherent quantum conduc-
tor.

although quantum effects in the capacitance were ob-
servable, the quantum charge-relaxation resistance was
not accessible in these earlier experiments.

At zero temperature in the coherent regime and when
a single mode is transmitted by the QPC, the meso-
scopic RC circuit is represented by the equivalent cir-
cuit of Fig.1B [9, 10]. The geometrical capacitanceC
is in series with the quantum admittancegq(ω) con-
necting the ac current flowing in the QPC to the ac in-
ternal potential of the dot:

gq(ω) =
1

h
2e2 + 1

−iωCq

(T = 0) (1)

The nonlocal quantum impedance behaves as if it were
the series addition of a quantum capacitanceCq with a
constant contact resistanceh/2e2. Cq = e2 dN

dε
is as-

sociated with the local density of statedN
dε

of the mode
propagating in the dot, taken at the Fermi energy. The

striking effect of phase coherence is that the QPC trans-
mission probabilityD affects the quantum capacitance
(see Eq.4) but not the resistance. The total circuit ad-
mittanceG is simply :

G =
−iωCgq(ω)

−iωC + gq(ω)
=

−iωCµ
2e2

h

−iωCµ + 2e2

h

, (T = 0)

(2)
whereCµ =

CCq

C+Cq

is the electrochemical capacitance.
In the incoherent regime, both resistance and quantum
capacitance vary with transmission. The dot forms a
second reservoir and the electrochemical capacitance
Cµ is in series with the QPC resistanceR. In partic-
ular, when the temperature is high enough to smooth
the capacitor density of states, the Landauer formula
R = h

e2 × 1

D
is recovered.

Several samples have been measured at low tempera-
tures, down to 30 mK, which show analogous features.
We present results on two samples made with 2DEG
defined in the same high-mobility GaAsAl/GaAs het-
erojunction, with nominal densityns = 1.7 × 1015

m−2 and mobilityµ = 260 V−1m2s−1. A finite mag-
netic field (B = 1.3 T) is applied, so as to work in the
ballistic quantum Hall regime with no spin degeneracy
[20].
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Figure 2: Complex conductance of sample E3 as function
of the gate voltageVG for T = 100 mK andω/2π = 1.2
GHz, at the opening of the first conduction channel (C) and
its Nyquist representation in (D). The theoretical circle char-
acteristic of the coherent regime is shown as a solid line. (A
and B) show the corresponding curves for the simulation of
sample E3 using the 1D model withC = 4 fF , Cµ = 1 fF .

The real and imaginary parts of the admittance
Im(G) andRe(G) as a function of QPC gate voltage
VG at the opening of the first conduction channel are
shown in Fig.2C. On increasingVG, we can distinguish
three regimes. At very negativeVG ≤ −0.86 V, the
admittance is zero. Starting from this pinched state,
peaks are observed in bothIm(G) andRe(G). Fol-
lowing a maximum in the oscillations, a third regime
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occurs whereIm(G) oscillates nearly symmetrically
about a plateau while the oscillation amplitude de-
creases smoothly. Simultaneously, peaks inRe(G)
quickly disappear to vanish in the noise.

Comparing these observations with the results of
refs.[9, 10],using a simplified one-dimensional (1D)
model forCq with one conduction mode and a constant
energy level spacing in the dot∆ [21], the simulation
(Fig.2A) shows a striking similarity to the experimen-
tal conductance traces in Fig.2C. In this simulation,VG

determines the transmissionD but also controls lin-
early the 1D dot potential. The transmission is chosen
to vary withVG according to a Fermi-Dirac-like depen-
dence appropriate to describe QPC transmission [22].
This model can be used to get a better understanding
of the different conductance regimes. Denotingr and
t the amplitude reflection and transmission coefficients
of the QPC (r2 = 1 − D, t =

√
D), we first calculate

the scattering amplitude of the RC circuit:

s(ε) = r − t2eiϕ

∞
∑

n=0

(reiϕ)n =
r − eiϕ

1 − reiϕ
(3)

whereε is the Fermi energy relative to the dot poten-
tial andϕ = 2πε/∆ is the phase accumulated for a
single turn in the quantum dot. The zero-temperature
quantum capacitance is then given by:

Cq = e2 dN
dε

=
1

2iπ
s+ ∂s

∂ε
=

e2

∆

1 − r2

1 − 2r cos 2π ε
∆

+ r2

(4)
Therefore,Cq exhibits oscillations when the dot poten-
tial is varied. Whenr → 0, these oscillations vanish
andCq → e2/∆. As reflection increases, oscillations

are growing with maximae
2

∆

1+r
1−r

and minimae2

∆

1−r
1+r

.
For strong reflection, Eq 4 gives resonant Lorentzian
peaks with an energy widthD∆/2 given by the escape
rate of the dot. However, at finite temperature, the con-
ductance in equation (1) has to be thermally averaged
to take into account the finite energy width of the elec-
tron source so that :

gq(ω) =

∫

dε

(

−∂f

∂ε

)

1

h/2e2 + 1/(−iωCq)
(5)

(T 6= 0)

wheref is the Fermi-Dirac distribution. Again, the
nonlocal admittance behaves as if it were the serial as-
sociation of a charge-relaxation resistanceRq and a ca-
pacitance that we still denoteCq. In the weak transmis-
sion regime (D → 0), whenD∆ ≪ kBT , equation (5)
yields thermally broadened capacitance peaks with

Cq ≃ e2

4kBT cosh2(δε/2kBT )
, (D << 1)

(6)
where δε denotes the energy distance to a resonant
dot level. Note that these capacitance peaks do not
depend on the dot parameters and can be used as

a primary thermometer. Similar but transmission-
dependent peaks are predicted in the inverse resistance

1/Rq ≃ D
e2

h

∆

4kBT cosh2(δε/2kBT )
, (D << 1)

(7)
This result is reminiscent of the thermally broadened
resonant tunneling conductance for transport through
a quantum dot. A consequence of the finite temper-
ature is the fact that the resistance is no longer con-
stant. This thermally-induced divergence ofRq at low
transmission restores a frequency-dependent pinch-off
for Rq ≫ 1/Cqω, as can be seen in both model
and experiment in Figs.2A.C. As mentioned above, for
kBT ≫ D∆, the quantum dot looks like a reservoir
and the Landauer formula is recovered.

The coherent and the thermally broadened regimes
are best demonstrated in the Nyquist representation
Im(G) versusRe(G) of the experimental data in
Fig.2D. This representation allows to easily distin-
guish constant resistance from constant capacitance
regimes, as they correspond to circles respectively cen-
tered on the real and imaginary axis. Whereas, for
low transmission, the Nyquist diagram strongly de-
pends on transmission, the conductance oscillations
observed in Fig.2C collapse on a single curve in the
coherent regime. Moreover this curve is the constant
Rq = h/2e2 circle. By contrast, admittance peaks at
low transmission correspond to a series of lobes in the
Nyquist diagram, with slopes increasing with transmis-
sion in qualitative agreement with Eqs.6 and 7. These
lobes and the constantRq regime are well reproduced
by the simulations in Fig.2B. Here, the value ofCµ

and the electronic temperature are deduced from mea-
surement. In our experimental conditions, the simu-
lated traces are virtually free of adjustable parameters
asC ≥ 4Cµ ≫ Cq.

It is important to note that in a real system, the
weak transmission regime is accompanied by Coulomb
blockade effects that are not taken into account in the
above model. In the weak transmission regime and
T = 0, using an elastic co-tunneling approach [23, 24],
we have checked that there is no qualitative change ex-
cept for the energy scale that now includes the charg-
ing energy so that∆ is replaced by∆+e2/C=e2/Cµ.
At large transmission, the problem is nonperturbative
in tunnel coupling and highly nontrivial. Calculations
of the thermodynamic capacitance exist [25, 26, 27],
but at present, no comprehensive model is available
that would include both charge-relaxation resistance
and quantum capacitance for finite temperature and/or
large transmission. Calibration of our admittance mea-
surements is a crucial step toward extracting the ab-
solute value of the constant charge-relaxation resis-
tance. As at GHz frequencies, direct calibration of the
whole detection chain is hardly better than 3dB, we
shall use here an indirect, but absolute, method, of-
ten used in Coulomb blockade spectroscopy, that re-
lies on the comparison between the gate voltage width
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Figure 3: Coulomb blockade oscillations in the real part of
the ac conductance in the low-transmission regime. The con-
trol voltage is applied to the counter-electrode for SampleE3
(A) and to the QPC gate for Sample E1 (B). The temperature
dependence is used for absolute calibration of our setup, as
described in the text : the peak width, shown in (C and D)
as a function of temperature, is deduced from theoretical fits
(solid lines) using Eq.(7) and taking a linear dependence of
energy with the control voltage. Lines in (C) and (D) are fits
of the experimental results using a

√

T 2 + T 2

0
law to take

into account a finite residual electronic temperatureT0.

of a thermally broadened Coulomb peak (∝ kBT ) and
the Coulomb peak spacing (∝ e2/Cµ). From this, an
absolute value ofCµ can be obtained. The real part
of the admittance of Sample E3 is shown as a func-
tion of the dc voltageVdc at the counter-electrode, for a
given low transmission (Fig.3A). A series of peaks with
periodicity ∆Vdc = 370 µV are observed, with the
peaks accurately fitted by Eq.7. Their width, propor-
tional to the electronic temperatureTel, is plotted ver-
sus the refrigerator temperatureT (see Fig.3C). When
corrected for apparent electron heating arising from
gaussian environmental charge noise, and if we assume
Tel =

√

T 2 + T 2
0 , the energy calibration of the gate

voltage yieldsCµ and the amplitude1/Cµω of the con-
ductance plateau in Fig.2. A similar analysis is done in
Fig.3, B and D, for sample E1 usingVG to control the
dot potential. Here peaks are distorted because of a
transmission-dependent background and show a larger
periodicity ∆VG = 2 mV, which reflects the weaker
electrostatic coupling to the 2DEG.

Finally, after numerical inversion of the conductance
data, we can separate the complex impedance into the
contributions of the capacitance,1/Cµω, and the re-
laxation resistanceRq. The results in Fig.4 demon-
strate deviations from standard Kirchhoff’s laws : the
charge-relaxation resistanceRq remains constant in
the regime where the quantum capacitance exhibits
strong transmission-dependent oscillations; this con-
stant value equals, within experimental uncertainty,
half the resistance quantum as prescribed by theory
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Figure 4: Complex impedance of Sample E3 (A and B)
and Sample E1 (C and D) as a function of QPC voltage for
T = 30 mK andB = 1.3 T. The dashed lines in (B and D)
correspond to the values ofCµ deduced from calibration. The
horizontal solid lines in (A and C) indicate the half-quantum
of resistance expected for the coherent regime. Uncertainties
onRq are displayed as hatched areas.

[9, 10]. In the weak transmission regime, the Lan-
dauer formula is recovered because of thermal broad-
ening, andRq diverges as it does in the dc regime. Fur-
thermore, additional measurements at4K prove that
the classical behavior is indeed recovered in the whole
transmission range wheneverkBT ≫ e2/Cµ.

In conclusion, we have experimentally shown that
the series association of a quantum capacitor and a
model quantum resistor leads to a violation of the dy-
namical Kirchhoff’s law of impedance addition. In
the fully coherent regime, the quantum resistor is
no longer given by the Landauer formula but by the
half-quantized charge-relaxation resistance predicted
in Ref.[9, 10].
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