48 research outputs found

    Severe arterial injury heals with a complex clonal structure involving a large fraction of surviving smooth muscle cells.

    Get PDF
    BACKGROUND AND AIMS Smooth muscle cell (SMC) lineage cells in atherosclerosis and flow cessation-induced neointima are oligoclonal, being recruited from a tiny fraction of medial SMCs that modulate and proliferate. The present study aimed to investigate the clonal structure of SMC lineage cells healing more severe arterial injury. METHODS Arterial injury (wire, stretch, and partial ligation) was inflicted on the right carotid artery in mice with homozygous, SMC-restricted, stochastically recombining reporter transgenes that produced mosaic expression of 10 distinguishable fluorescent phenotypes for clonal tracking. Healed arteries and contra-lateral controls were analyzed after 3 weeks. Additional analysis of cell death and proliferation after injury was performed in wildtype mice. RESULTS The total number of SMC lineage cells in healed arteries was comparable to normal arteries but comprised significantly fewer fluorescent phenotypes. The population had a complex, intermixed, clonal structure. By statistical analysis of expected versus observed fractions of fluorescent phenotypes and visual inspection of coherent groups of same-colored cells, we concluded that >98% of SMC lineage cells in healed arteries belonged to a detectable clone, indicating that nearly all surviving SMCs after severe injury at some point undergo proliferation. This was consistent with serial observations in the first week after injury, which showed severe loss of medial cells followed by widespread proliferation. CONCLUSIONS After severe arterial injury, many surviving SMCs proliferate to repair the media and form a neointima. This indicates that the fraction of medial SMCs that are mobilized to repair arteries increases with the level of injury.This study was supported by grants from the Novo Nordisk Foundation (NNF17OC0030688 and NNF21OC0071830).S

    Generation and characterization of a novel knockin minipig model of Hutchinson-Gilford progeria syndrome

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder for which no cure exists. The disease is characterized by premature aging and inevitable death in adolescence due to cardiovascular complications. Most HGPS patients carry a heterozygous de novo LMNA c.1824C > T mutation, which provokes the expression of a dominant-negative mutant protein called progerin. Therapies proven effective in HGPS-like mouse models have yielded only modest benefit in HGPS clinical trials. To overcome the gap between HGPS mouse models and patients, we have generated by CRISPR-Cas9 gene editing the first large animal model for HGPS, a knockin heterozygous LMNA c.1824C > T Yucatan minipig. Like HGPS patients, HGPS minipigs endogenously co-express progerin and normal lamin A/C, and exhibit severe growth retardation, lipodystrophy, skin and bone alterations, cardiovascular disease, and die around puberty. Remarkably, the HGPS minipigs recapitulate critical cardiovascular alterations seen in patients, such as left ventricular diastolic dysfunction, altered cardiac electrical activity, and loss of vascular smooth muscle cells. Our analysis also revealed reduced myocardial perfusion due to microvascular damage and myocardial interstitial fibrosis, previously undescribed readouts potentially useful for monitoring disease progression in patients. The HGPS minipigs provide an appropriate preclinical model in which to test human-size interventional devices and optimize candidate therapies before advancing to clinical trials, thus accelerating the development of effective applications for HGPS patients.This project was mainly supported by an Established Investigator Award from the Progeria Research Foundation (2014-52), and from the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU), and the European Regional Development Fund (FEDER, “A way to build Europe”) (SAF2016-79490-R, CB16/11/00405). Ana Barettino has a predoctoral contract from MCIU (BES-2017-079705). Work at Universidad de Murcia is supported by Fundación Seneca-Agencia de Ciencia y Tecnología de la Región de Murcia (20040/GERM/16). The CNIC is supported by the MCIU and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    A genetically modified minipig model for Alzheimer's disease with SORL1 haploinsufficiency

    Get PDF
    The established causal genes in Alzheimer’s disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease’s initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%–3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of β-amyloid (Aβ) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD

    Dimensjonering, analyse og testing av inserts i karbonfiber kompositt sandwich chassis

    No full text
    I arbeidet med denne avhandlingen har det blitt utført et omfattende arbeid på ulike aspekter ved utviklingen av et monocoque chassis designet for å konkurrere i Formula Student. Analyse, dimensjonering og produksjon er hovedtema i denne oppgaven. Fokuset har ligget i å beskrive den tilnærmingen som brukes i designfasen, analyse og testing av lokaliserte laster på sandwichpaneler, samt utvikle en produksjonsprosess for chassiset. Alt av dimensjonering, analyse og testing er utført på sandwich paneler representativt for et monocoque chassis. Hovedfokuset har vært et racerbilchassis for Revolve NTNU, med tilhørende laster. Monocoque-chassiset er en selvbærende konstruksjon hvor hjuloppheng, girkasse, veltebøyler og andre innfestninger går direkte i chassiset som tar opp alle kreftene. Mye av arbeidet har blitt gjort i analyse og eksperimentell testing av lokaliserte laster på sandwich paneler med såkalte inserts , da dette er den mest brukte metoden for å overføre laster inn på et skjærsvakt sandwichpanel. Eksperimeter og testing har vært en stor del av denne avhandlingen. Den meste av teorien som er beskrevet og brukt i denne oppgaven er også basert på empiriske resultater. Mye av arbeidet har bestått av den faktiske produksjon av strukturen, og tilhørende måling og verifisering av strukturen
    corecore