241 research outputs found

    Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model

    Full text link
    We study the effect of a many-body interaction on inter-band oscillations in a two-band Bose-Hubbard model with external Stark force. Weak and strong inter-band oscillations are observed, where the latter arise from a resonant coupling of the bands. These oscillations collapse and revive due to a weak two-body interaction between the atoms. Effective models for oscillations in and out of resonance are introduced that provide predictions for the system's behaviour, particularly for the time-scales for the collapse and revival of the resonant inter-band oscillations.Comment: 10 pages, 5 figure

    Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults

    Get PDF
    Sepsis is a severe and life-threatening systemic inflammatory response to infection that affects all populations and age groups. The pathophysiology of sepsis is associated with aberrant interaction between leukocytes and the vascular endothelium. As inflammation progresses, the adhesion molecules that mediate these interactions become shed from cell surfaces and accumulate in the blood as soluble isoforms that are being explored as potential prognostic disease biomarkers. We critically review the studies that have tested the predictive value of soluble adhesion molecules in sepsis pathophysiology with emphasis on age, as well as the underlying mechanisms and potential roles for inflammatory shedding. Five soluble adhesion molecules are associated with sepsis, specifically, E-selectin, L-selectin and P-selectin, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. While increased levels of these soluble adhesion molecules generally correlate well with the presence of sepsis, their degree of elevation is still poorly predictive of sepsis severity scores, outcome and mortality. Separate analyses of neonates, children and adults demonstrate significant age-dependent discrepancies in both basal and septic levels of circulating soluble adhesion molecules. Additionally, a range of both clinical and experimental studies suggests protective roles for adhesion molecule shedding that raise important questions about whether these should positively or negatively correlate with mortality. In conclusion, while predictive properties of soluble adhesion molecules have been researched intensively, their levels are still poorly predictive of sepsis outcome and mortality. We propose two novel directions for improving clinical utility of soluble adhesion molecules: the combined simultaneous analysis of levels of adhesion molecules and their sheddases; and taking age-related discrepancies into account. Further attention to these issues may provide better understanding of sepsis pathophysiology and increase the usefulness of soluble adhesion molecules as diagnostic and predictive biomarkers

    Renal hypoperfusion and impaired endothelium-dependent vasodilation in an animal model of VILI: the role of the peroxynitrite-PARP pathway

    Get PDF
    Introduction: Mechanical ventilation (MV) can injure the lungs and contribute to an overwhelming inflammatory response, leading to acute renal failure (ARF). We previously showed that poly(adenosine diphosphate-ribose) polymerase (PARP) is involved in the development of ventilator-induced lung injury (VILI) and the related ARF, but the mechanisms underneath remain unclear. In the current study we therefore tested the hypothesis that renal blood flow and endothelial, functional and tissue changes in the kidney of rats with lipopolysaccharide (LPS)-induced lung injury aggravated by MV, is caused, in part, by activation of PARP by peroxynitrite.Methods: Anesthetized Sprague Dawley rats (n = 31), were subjected to intratracheal instillation of lipopolysaccharide at 10 mg/kg followed by 210 min of mechanical ventilation at either low tidal volume (6 mL/kg) with 5 cm H2O positive end-expiratory pressure or high tidal volume (19 mL/kg) with zero positive end-expiratory pressure in the presence or absence of a peroxynitrite decomposition catalyst, WW85 or a PARP inhibitor, PJ-34. During the experiment, hemodynamics and blood gas variables were monitored. At time (t) t = 0 and t = 180 min, renal blood flow was measured. Blood and urine were collected for creatinine clearance measurement. Arcuate renal arteries were isolated for vasoreactivity experiment and kidneys snap frozen for staining.Results: High tidal volume ventilation resulted in lung injury, hypotension, renal hypoperfusion and impaired renal endothelium-dependent vasodilation, associated with renal dysfunction and tissue changes (leukocyte accumulation and increased expression of neutrophil gelatinase-associated lipocalin). Both WW85 and PJ-34 treatments attenuated lung injury, preserved blood pressure, attenuated renal endothelial dysfunction and maintained renal blood flow. In multivariable analysis, renal blood flow improvement was, independently from each other, associated with both maintained blood pressure and endothelium-dependent vasodilation by drug treatment. Finally, drug treatment improved renal function and reduced tissue changes.Conclusions: The peroxynitrite-induced PARP activation is involved in renal hypoperfusion, impaired endothelium-dependent vasodilation and resultant dysfunction, and injury, in a model of lung injury

    Shelf ice-associated cryo-benthos and environmental features

    Get PDF
    Incidences of cryo-benthic communities beneath ice shelves are rare and recent discoveries. Combined seal- and ROV-borne imagery and novel sampling technologies allowed for a re-assessment and augmentation of earlier findings on a cryo-benthic isopod community (Antarcturus cf. spinacoronatus), being attached head-down to the underside of floating shelf ice at depths of around 80-150m. The shelf ice-associated cryo-benthos was discovered at Drescher Inlet (-72.83667 -19.15300), Riiser-Larsen Ice Shelf (eastern Weddell Sea). The inlet constitutes a 25km long and between 2 and 4km wide crack in the surrounding shelf ice, which is associated with certain environmental features. Here we compile all available local physical, biological, and biogeochemical data and discuss their relevance in the wider regional context for this faunal hotspot. These include data on shelf, sea and platelet ice, seafloor topography, hydrography and water chemistry, as well as associated pelagic and benthic marine life, in particular affinities of the cryo-benthic isopod community to related fauna occurring in nearby seabed communities using molecular barcoding

    Demand for environmentally friendly vehicles: A review and new evidence

    Get PDF
    Although the need for more environmentally friendly vehicles was recognized some decades ago, this new market has not yet established itself. Consumer behavior needs to be studied to ascertain when people will decide to purchase hybrid or electric vehicles rather than conventional ones. An in-depth review of the state-of-the-art has identified existing deficiencies and these are addressed in this paper, proposing a new approach that is applied to the case of Santander in Spain. Emphasis is placed on the role of citizens in researching the local market and their requirements with respect to such vehicles; our model assumes variability in user preferences, an utmost requirement as concluded from the literature review. Results suggest that the highest demand for cleaner vehicles would be achieved in two ways: firstly, by penalizing conventional vehicles in terms of costs/km; secondly, by providing incentives directed at lowering the purchasing price of hybrid and electric vehicles. Finally, as demand becomes more elastic, the preferred strategy should initially focus on hybrid vehicles
    corecore