392 research outputs found
NGF-response of EGF-dependent progenitor cells obtained from human sympathetic ganglia
SIGNALLING molecules are thought to play a significant role in determining the fate of neural crest progenitor cells. The human sympathetic chain was identified at 6.5, 7.5, 8.2, 10.2 and 11.4 postconception (PC) weeks demonstrating low affinity nerve growth factor (NGF) receptors, and was processed for tissue culture. In the presence of epidermal growth factor (EGF), floating spheres of proliferating progenitor cells were developed in vitro. In the absence of EGF progenitor cells differentiated into tyrosine hydroxylase (TH)-immunoreactive neuronal and TH-negative flat cells. NGF treatment significantly increased neurite outgrowth and survival of TH-immunoreactive cells. The multipotent cells we isolated differ from previously reported sympathoadrenal progenitors in that they give rise to TH immunoreactive neurones precociously sensitive to NGF
Microfluidic tools for enhanced characterization of therapeutic stem cells and prediction of their potential antimicrobial secretome
Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advan-tageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms
PARP inhibitors affect growth, survival and radiation susceptibility of human alveolar and embryonal rhabdomyosarcoma cell lines
PARP inhibitors (PARPi) are used in a wide range of human solid tumours but a limited evidence is reported in rhabdomyosarcoma (RMS), the most frequent childhood soft-tissue sarcoma. The cellular and molecular effects of Olaparib, a specific PARP1/2 inhibitor, and AZD2461, a newly synthesized PARP1/2/3 inhibitor, were assessed in alveolar and embryonal RMS cells both as single-agent and in combination with ionizing radiation (IR)
A new predictive technology for perinatal stem cell isolation suited for cell therapy approaches
The use of stem cells for regenerative applications and immunomodulatory effect is in-creasing. Amniotic epithelial cells (AECs) possess embryonic‐like proliferation ability and multipo-tent differentiation potential. Despite the simple isolation procedure, inter‐individual variability and different isolation steps can cause differences in isolation yield and cell proliferation ability, compromising reproducibility observations among centers and further applications. We investi-gated the use of a new technology as a diagnostic tool for quality control on stem cell isolation. The instrument label‐free separates cells based on their physical characteristics and, thanks to a micro-camera, generates a live fractogram, the fingerprint of the sample. Eight amniotic membranes were processed by trypsin enzymatic treatment and immediately analysed. Two types of profile were generated: a monomodal and a bimodal curve. The first one represented the unsuccessful isolation with all recovered cell not attaching to the plate; while for the second type, the isolation process was successful, but we discovered that only cells in the second peak were alive and resulted adherent. We optimized a Quality Control (QC) method to define the success of AEC isolation using the frac-togram generated. This predictive outcome is an interesting tool for laboratories and cell banks that isolate and cryopreserve fetal annex stem cells for research and future clinical applications
Triple positive breast cancer. A distinct subtype?
Breast cancer is a heterogeneous disease, and within the HER-2 positive subtype this is highly exemplified by the presence of substantial phenotypical and clinical heterogeneity, mostly related to hormonal receptor (HR) expression. It is well known how HER-2 positivity is commonly associated with a more aggressive tumor phenotype and decreased overall survival and, moreover, with a reduced benefit from endocrine treatment. Preclinical studies corroborate the role played by functional crosstalks between HER-2 and estrogen receptor (ER) signaling in endocrine resistance and, more recently, the activation of ER signaling is emerging as a possible mechanism of resistance to HER-2 blocking agents. Indeed, HER-2 positive breast cancer heterogeneity has been suggested to underlie the variability of response not only to endocrine treatments, but also to HER-2 blocking agents. Among HER-2 positive tumors, HR status probably defines two distinct subtypes, with dissimilar clinical behavior and different sensitivity to anticancer agents. The triple positive subtype, namely, ER/PgR/Her-2 positive tumors, could be considered the subset which most closely resembles the HER-2 negative/HR positive tumors, with substantial differences in biology and clinical outcome. We argue on whether in this subgroup the "standard" treatment may be considered, in selected cases, i.e., small tumors, low tumor burden, high expression of both hormonal receptors, an overtreatment. This article review the existing literature on biologic and clinical data concerning the HER-2/ER/PgR positive tumors, in an attempt to better define the HER-2 subtypes and to optimize the use of HER-2 targeted agents, chemotherapy and endocrine treatments in the various subsets
Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton's Jelly Mesenchymal Stem Cells
Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1-3 mu M) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers
Devices for less invasive surfactant therapy: a manikin study
peer reviewedBackground:
“Less invasive surfactant therapy” (LIST), or tracheal instillation of surfactant through a small catheter in spontaneously breathing infants, is gaining popularity. Different catheters are currently used for this purpose: a nasogastric tube inserted with (LISA) or without (Take Care) Magill’s forceps, a 13 cm 16G adult angiocath (MIST), a 30 cm F4 angiography catheter (Stockholm). We developed a specific device by combining a F5 umbilical catheter and an intubation stylet (Liege). We aimed to compare those 5 devices using INSURE as a reference.
Methods:
20 neonatologists from 4 institutions supporting different surfactant instillation policies intubated 2 manikin heads with the 5 catheters and an endotracheal tube in a predetermined random sequence. Water was flushed trough the catheter. Video review provided times between laryngoscope (T1) or catheter insertion (T2) in the mouth and water flowing from the trachea. Participants gave an ease of use score (range: 1-9) for each catheter.
Results:
Procedural times were longer with the Take Care method and shorter with the Liège device (Table). Failure rates were higher for LIST procedures than for INSURE. Take Care and LISA were rated as more difficult, while Liège, Stockholm and INSURE were considered easier.
Conclusions:
LIST procedures remain difficult, even on a manikin. The choice of catheter is important. A device combining the rigidity of a stylet with the soft distal end of an umbilical catheter is associated with procedures of shorter duration and is considered easier by neonatologists
Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton’s Jelly Mesenchymal Stem Cells
Among perinatal stem cells of the umbilical cord, human Wharton’s jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1–3 μM) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers
Prognostic Relevance of Neutrophil to Lymphocyte Ratio (NLR) in Luminal Breast Cancer: A Retrospective Analysis in the Neoadjuvant Setting
The neutrophil to lymphocyte ratio (NLR) is a promising predictive and prognostic factor in breast cancer. We investigated its ability to predict disease-free survival (DFS) and overall survival (OS) in patients with luminal A- or luminal B-HER2-negative breast cancer who received neoadjuvant chemotherapy (NACT). Pre-treatment complete blood cell counts from 168 consecutive patients with luminal breast cancer were evaluated to assess NLR. The study population was stratified into NLRlow or NLRhigh according to a cut-off value established by receiving operator curve (ROC) analysis. Data on additional pre- and post-treatment clinical-pathological characteristics were also collected. Kaplan-Meier curves, log-rank tests, and Cox proportional hazards models were used for statistical analyses. Patients with pre-treatment NLRlow showed a significantly shorter DFS (HR: 6.97, 95% CI: 1.65-10.55, p = 0.002) and OS (HR: 7.79, 95% CI: 1.25-15.07, p = 0.021) compared to those with NLRhigh. Non-ductal histology, luminal B subtype, and post-treatment Ki67 ≥ 14% were also associated with worse DFS (p = 0.016, p = 0.002, and p = 0.001, respectively). In a multivariate analysis, luminal B subtype, post-treatment Ki67 ≥ 14%, and NLRlow remained independent prognostic factors for DFS, while only post-treatment Ki67 ≥ 14% and NLRlow affected OS. The present study provides evidence that pre-treatment NLRlow helps identify women at higher risk of recurrence and death among patients affected by luminal breast cancer treated with NACT
Otx015 epi‐drug exerts antitumor effects in ovarian cancer cells by blocking gnl3‐mediated radioresistance mechanisms: Cellular, molecular and computational evidence
Ovarian cancer (OC) is the most aggressive gynecological tumor worldwide and, notwithstanding the increment in conventional treatments, many resistance mechanisms arise, this leading to cure failure and patient death. So, the use of novel adjuvant drugs able to counteract these pathways is urgently needed to improve patient overall survival. A growing interest is focused on epigenetic drugs for cancer therapy, such as Bromodomain and Extra‐Terminal motif inhibitors (BETi). Here, we investigate the antitumor effects of OTX015, a novel BETi, as a single agent or in combination with ionizing radiation (IR) in OC cellular models. OTX015 treatment significantly reduced tumor cell proliferation by triggering cell cycle arrest and apoptosis that were linked to nucleolar stress and DNA damage. OTX015 impaired migration capacity and potentiated IR effects by reducing the expression of different drivers of cancer resistance mechanisms, including GNL3 gene, whose expression was found to be significantly higher in OC biopsies than in normal ovarian tissues. Gene specific knocking down and computational network analysis confirmed the centrality of GNL3 in OTX015‐mediated OC antitumor effects. Altogether, our findings suggest OTX015 as an effective option to improve therapeutic strategies and overcome the development of resistant cancer cells in patients with OC
- …