626 research outputs found

    An Evaluation of The Effectiveness of Adaptive Histogram Equalization for Contrast Enhancement

    Get PDF
    Adaptive Histogram Equalization (AHE), a method of contrast enhancement which is sensitive to local spatial information in an image, has been proposed as a solution to the problem of the inability of ordinary display devices to depict the full dynamic intensity range in some medical images. This method is automatic, reproducible, and simultaneously displays most of the information contained in the grey-scale contrast of the image. However, it has not been known whether the use of AHE causes the loss of diagnostic information relative to the commonly-used method intensity windowing. In the current work, AHE and intensity windowing are compared using psychophysical observer studies. In studies performed at North Carolina Memorial Hospital, experienced radiologists were shown clinical CT images of the chest. Into some of the images, appropriate artificial lesion were introduced; the physicians were then shown the images processed with both AHE and intensity windowing. They were asked to assess the probability that as given image contained the artificial lesion, and their accurate was measured. The results of these experiments shown that for this particular diagnostic task, there was no significant difference in the ability of the two methods to depict luminance contrast; thus, further evaluation of AHE using controlled clinical trials is indicated

    Priority for the Worse Off and the Social Cost of Carbon

    Get PDF
    The social cost of carbon (SCC) is a monetary measure of the harms from carbon emission. Specifically, it is the reduction in current consumption that produces a loss in social welfare equivalent to that caused by the emission of a ton of CO2. The standard approach is to calculate the SCC using a discounted-utilitarian social welfare function (SWF)—one that simply adds up the well-being numbers (utilities) of individuals, as discounted by a weighting factor that decreases with time. The discounted-utilitarian SWF has been criticized both for ignoring the distribution of well-being, and for including an arbitrary preference for earlier generations. Here, we use a prioritarian SWF, with no time-discount factor, to calculate the SCC in the integrated assessment model RICE. Prioritarianism is a well-developed concept in ethics and theoretical welfare economics, but has been, thus far, little used in climate scholarship. The core idea is to give greater weight to well-being changes affecting worse off individuals. We find substantial differences between the discounted-utilitarian and non-discounted prioritarian SCC

    Hippocampal Shape Analysis Using Medial Surfaces

    Full text link

    And now for something completely different? The impact of group membership on perceptions of creativity

    Get PDF
    Authors' draft; final version published in Social influence; available online at http://www.informaworld.com/ Embargo until 1 July 2010A wealth of historical, cultural, and biographical evidence points to the fact that there is considerable variation in different people's judgments of creative products. What is creative to one person is deviant to another, and creative efforts often fail to be given the enthusiastic reception that their creators anticipate and think they deserve. Unpacking the roots of these discrepancies, this paper develops an analysis of creativity that is informed by the social identity approach. This analysis is supported by a review of previous research that points to the way in which perceptions of creativity are structured by both self-categorization and social norms (and their interaction). Further support for the analysis is provided by two experiments (Ns = 100, 125) which support the hypothesis that ingroup products are perceived to be more creative than those of outgroups independently of other factors with which group membership is typically correlated in the world at large (e.g., quality). The studies also indicate that this pattern is not simply a manifestation of generic ingroup bias since judgments of creativity diverge from those of both likeability (Experiment 1) and beauty (Experiment 2). The theoretical and practical significance of these findings is discussed with particular reference to innovation resistance and the “not invented here” syndrome.This research was supported by a grant from the Economic and Social Research Council (RES-062-23-0135)

    B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion

    Get PDF
    This paper explores a new way of instantiating isogeny-based cryptography in which parties can work in both the (p+1)-torsion of a set of supersingular curves and in the (p-1)-torsion corresponding to the set of their quadratic twists. Although the isomorphism between a given supersingular curve and its quadratic twist is not defined over GF(p^2) in general, restricting operations to the x-lines of both sets of twists allows all arithmetic to be carried out over GF(p^2) as usual. Furthermore, since supersingular twists always have the same GF(p^2)-rational j-invariant, the SIDH protocol remains unchanged when Alice and Bob are free to work in both sets of twists. This framework lifts the restrictions on the shapes of the underlying prime fields originally imposed by Jao and De Feo, and allows a range of new options for instantiating isogeny-based public key cryptography. These include alternatives that exploit Mersenne and Montgomery-friendly primes, as well as the possibility of significantly reducing the size of the primes in the Jao-De Feo construction at no known loss of asymptotic security. For a given target security level, the resulting public keys are smaller than the public keys of all of the key encapsulation schemes currently under consideration in the NIST post-quantum standardisation effort. The best known attacks against the instantiations proposed in this paper are the classical path finding algorithm due to Delfs and Galbraith and its quantum adapation due to Biasse, Jao and Sankar; these run in respective time O(p^(1/2)) and O(p^(1/4)), and are essentially memory-free. The upshot is that removing the big-O\u27s and obtaining concrete security estimates is a matter of costing the circuits needed to implement the corresponding isogeny. In contrast to other post-quantum proposals, this makes the security analysis of B-SIDH rather straightforward. Searches for friendly parameters are used to find several primes that range from 237 to 256 bits, the conjectured security of which are comparable to the 434-bit prime used to target NIST level 1 security in the SIKE proposal. One noteworthy example is a 247-bit prime for which Alice\u27s secret isogeny is 7901-smooth and Bob\u27s secret isogeny is 7621-smooth
    corecore