8 research outputs found

    Effects of diets high in animal or plant protein on oxidative stress in individuals with type 2 diabetes: a randomized clinical trial

    Get PDF
    High-protein diet is a promising strategy for diabetes treatment supporting body weight control, improving glycaemic status, cardiovascular risk factors and reducing liver fat. Here, we investigated effects of diets high in animal (AP) or plant (PP) protein on oxidative stress and antioxidant status in individuals with type 2 diabetes (T2DM). 37 obese individuals (age 64.3 ± 1.0 years) with T2DM were randomized to an isocaloric diet (30 energy(E)% protein, 30E% fat and 40E% carbohydrates) rich in AP or PP for 6 weeks. Markers of oxidative and nitrosative stress and antioxidant status in plasma and nitrate/nitrite levels in urine were assessed. Gene expression in subcutaneous adipose tissue (SAT) was analyzed by RNA-Seq and real-time PCR.Both AP and PP diets similarly reduced plasma levels of malondialdehyde (P(AP) = 0.003, P(PP) = 1.6x10(-4)) and protein carbonyls (P(AP) = 1.2x10(-4), P(PP) = 3.0x10(-5)) over 6 weeks. Nitrotyrosine (NT) increased upon both AP and PP diets (PAP = 0.005,PPP = 0.004). SAT expression of genes involved in nitric oxide (NO) and oxidative stress metabolism and urine NO metabolite (nitrate/nitrite) levels were not changed upon both diets. Plasma levels of carotenoids increased upon PP diet, whereas retinol, alpha- and gamma-tocopherol slightly decreased upon both diets. AP and PP diets similarly improve oxidative stress but increase nitrosative stress markers in individuals with T2DM. Mechanisms of the NT regulation upon high-protein diets need further investigation

    Physical performance and non-esterified fatty acids in men and women after transcatheter aortic valve implantation (TAVI)

    Get PDF
    BACKGROUND: Men and women with valvular heart disease have different risk profiles for clinical endpoints. Non-esterified fatty acids (NEFA) are possibly involved in cardio-metabolic disease. However, it is unclear whether NEFA concentrations are associated with physical performance in patients undergoing transcatheter aortic valve implantation (TAVI) and whether there are sex-specific effects. METHODS: To test the hypothesis that NEFA concentration is associated with sex-specific physical performance, we prospectively analysed data from one hundred adult patients undergoing TAVI. NEFA concentrations, physical performance and anthropometric parameters were measured before and 6 and 12 months after TAVI. Physical performance was determined by a six-minute walking test (6-MWT) and self-reported weekly bicycle riding time. RESULTS: Before TAVI, NEFA concentrations were higher in patients (44 women, 56 men) compared to the normal population. Median NEFA concentrations at 6 and 12 months after TAVI were within the reference range reported in the normal population in men but not women. Men but not women presented with an increased performance in the 6-MWT over time (p = 0.026, p = 0.142, respectively). Additionally, men showed an increased ability to ride a bicycle after TAVI compared to before TAVI (p = 0.034). NEFA concentrations before TAVI correlated with the 6-MWT before TAVI in women (Spearman's rho -0.552; p = 0.001) but not in men (Spearman's rho -0.007; p = 0.964). No association was found between NEFA concentrations and physical performance 6 and 12 months after TAVI. CONCLUSIONS: NEFA concentrations improved into the reference range in men but not women after TAVI. Men but not women have an increased physical performance after TAVI. No association between NEFA and physical performance was observed in men and women after TAVI

    Multiple sclerosis and circadian rhythms: Can diet act as a treatment?

    No full text
    Multiple sclerosis (MS) is an autoimmune inflammatory and neurodegenerative disease of the central nervous system (CNS) with increasing incidence and prevalence. MS is associated with inflammatory and metabolic disturbances that, as preliminary human and animal data suggest, might be mediated by disruption of circadian rhythmicity. Nutrition habits can influence the risk for MS, and dietary interventions may be effective in modulating MS disease course. Chronotherapeutic approaches such as time-restricted eating (TRE) may benefit people with MS by stabilizing the circadian clock and restoring immunological and metabolic rhythms, thus potentially counteracting disease progression. This review provides a summary of selected studies on dietary intervention in MS, circadian rhythms, and their disruption in MS, including clock gene variations, circadian hormones, and retino-hypothalamic tract changes. Furthermore, we present studies that reported diurnal variations in MS, which might result from circadian disruption. And lastly, we suggest how chrononutritive approaches like TRE might counteract MS disease activity

    Liver fat scores do not reflect interventional changes in liver fat content induced by high-protein diets.

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is common in Metabolic Syndrome and type 2 diabetes (T2DM), driven by energy imbalance, saturated fats and simple carbohydrates. NAFLD requires screening and monitoring for late complications. Liver fat indices may predict NAFLD avoiding expensive or invasive gold-standard methods, but they are poorly validated for use in interventional settings. Recent data indicate a particular insensitivity to weight-independent liver fat reduction. We evaluated 31 T2DM patients, completing a randomized intervention study on isocaloric high-protein diets. We assessed anthropometric measures, intrahepatic lipid (IHL) content and serum liver enzymes, allowing AUROC calculations as well as cross-sectional and longitudinal Spearman correlations between the fatty liver index, the NAFLD-liver fat score, the Hepatosteatosis Index, and IHL. At baseline, all indices predicted NAFLD with moderate accuracy (AUROC 0.731-0.770), supported by correlation analyses. Diet-induced IHL changes weakly correlated with changes of waist circumference, but no other index component or the indices themselves. Liver fat indices may help to easily detect NAFLD, allowing cost-effective allocation of further diagnostics to patients at high risk. IHL reduction by weight-independent diets is not reflected by a proportional change in liver fat scores. Further research on the development of treatment-sensitive indices is required.Trial registration: The trial was registered at clinicaltrials.gov: NCT02402985

    High protein diets improve liver fat and insulin sensitivity by prandial but not fasting glucagon secretion in type 2 diabetes.

    Get PDF
    Glucagon (GCGN) plays a key role in glucose and amino acid (AA) metabolism by increasing hepatic glucose output. AA strongly stimulate GCGN secretion which regulates hepatic AA degradation by ureagenesis. Although increased fasting GCGN levels cause hyperglycemia GCGN has beneficial actions by stimulating hepatic lipolysis and improving insulin sensitivity through alanine induced activation of AMPK. Indeed, stimulating prandial GCGN secretion by isocaloric high protein diets (HPDs) strongly reduces intrahepatic lipids (IHLs) and improves glucose metabolism in type 2 diabetes mellitus (T2DM). Therefore, the role of GCGN and circulating AAs in metabolic improvements in 31 patients with T2DM consuming HPD was investigated. Six weeks HPD strongly coordinated GCGN and AA levels with IHL and insulin sensitivity as shown by significant correlations compared to baseline. Reduction of IHL during the intervention by 42% significantly improved insulin sensitivity [homeostatic model assessment for insulin resistance (HOMA-IR) or hyperinsulinemic euglycemic clamps] but not fasting GCGN or AA levels. By contrast, GCGN secretion in mixed meal tolerance tests (MMTTs) decreased depending on IHL reduction together with a selective reduction of GCGN-regulated alanine levels indicating greater GCGN sensitivity. HPD aligned glucose metabolism with GCGN actions. Meal stimulated, but not fasting GCGN, was related to reduced liver fat and improved insulin sensitivity. This supports the concept of GCGN-induced hepatic lipolysis and alanine- and ureagenesis-induced activation of AMPK by HPD

    Shotgun Lipidomics Discovered Diurnal Regulation of Lipid Metabolism Linked to Insulin Sensitivity in Nondiabetic Men.

    No full text
    Meal timing affects metabolic homeostasis and body weight, but how composition and timing of meals affect plasma lipidomics in humans is not well studied

    Insulin directly regulates the circadian clock in adipose tissue

    No full text
    Adipose tissue (AT) is a key metabolic organ which functions are rhythmically regulated by an endogenous circadian clock. Feeding is a zeitgeber aligning the clock in AT with the external time but mechanisms of this regulation remain largely unclear. We tested the hypothesis that postprandial changes of the hormone insulin directly entrain circadian clocks in AT and investigated transcriptional-dependent mechanism of this regulation. We analysed gene expression in subcutaneous AT (SAT) of obese subjects collected before and after the hyperinsulinemic-euglycemic clamp (EC) or control saline infusion (SC). The expression of core clock gene PER2, PER3 and NR1D1 in SAT were differentially changed upon insulin and saline infusion suggesting insulin-dependent clock regulation. In human stem cell-derived adipocytes, mouse 3T3-L1 cells and AT explants from mPer2Luc knockin mice, insulin induced a transient increase of the Per2 mRNA and protein expression leading to the phase shift of circadian oscillations and showing similar effects for Per1. Insulin effects were dependent on the region between the -64 and -43 in the Per2 promoter, but not on CRE and E-box elements. Our results demonstrate that insulin directly regulates circadian clocks in AT and isolated adipocytes and thus represent a primary mechanism of feeding-induced AT clock entrainment

    High-protein diet more effectively reduces hepatic fat than low-protein diet despite lower autophagy and FGF21 levels.

    No full text
    Background and aims Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent and nutrition intervention remains the most important therapeutic approach for NAFLD. Our aim was to investigate whether low- (LP) or high-protein (HP) diets are more effective in reducing liver fat and reversing NAFLD and which mechanisms are involved. Methods 19 participants with morbid obesity undergoing bariatric surgery were randomized into two hypocaloric (1500-1600 kcal/day) diet groups, a low protein (10E% protein) and a high protein (30E% protein), for three weeks prior to surgery. Intrahepatic lipid levels (IHL) and serum fibroblast growth factor 21 (FGF21) were measured before and after the dietary intervention. Autophagy flux, histology, mitochondrial activity and gene expression analyses were performed in liver samples collected during surgery. Results IHL levels decreased by 42.6% in the HP group, but were not significantly changed in the LP group despite similar weight loss. Hepatic autophagy flux and serum FGF21 increased by 66.7% and 42.2%, respectively, after 3 weeks in the LP group only. Expression levels of fat uptake and lipid biosynthesis genes were lower in the HP group compared with those in the LP group. RNA-seq analysis revealed lower activity of inflammatory pathways upon HP diet. Hepatic mitochondrial activity and expression of beta-oxidation genes did not increase in the HP group. Conclusions HP diet more effectively reduces hepatic fat than LP diet despite of lower autophagy and FGF21. Our data suggest that liver fat reduction upon HP diets result primarily from suppression of fat uptake and lipid biosynthesis
    corecore