38 research outputs found
Asymmetric Synthesis of Anti N -Boc-α-Hydrazino-β-Hydroxyesters from β-Ketoesters by Sequential Catalytic Hydrogenation and Electrophilic Amination
International audienceEnantiomerically pure anti N-Boc-α-hydrazino-β-hydroxyesters were obtained from the corresponding β-ketoesters by hydrogenation with chiral Ruthenium catalysts and electrophilic amination of the β-hydroxyester with di-tert-butylazodicarboxylate (DBAD)
Champs et perspectives en géographie culturelle
Lieu de confrontation d'idées et d'expériences, Géographie et cultures répond à l'intérêt renouvelé de la géographie pour les faits de civilisations, et des sciences sociales pour l'environnement. Quel est le rôle de l'espace dans la structuration d'une culture ? Comment perçoit-on l'influence d'une civilisation dans l'organisation pas les hommes de leur espace et de leur milieu ? Un domaine fécond et encore peu exploré s'ouvre à l'analyse, lorsqu'on observe les relations entre phénomènes géographiques (espace, milieu, territoire, paysage, régions...). Cette revue de géographie culturelle et d'ethno-géographie s'adresse çà tous ceux qui s'interrogent sur les interactions entre espace et culture, sous toutes les latitudes et à toutes les échelles : historiens, ethnologues, sociologues, psychologues, économistes, géographes ou écrivains
Structure-activity relationships and blood distribution of antiplasmodial aminopeptidase-1 inhibitors
International audienceMalaria is a severe infectious disease that causes between 655 000 and 1.2 million deaths annually. To overcome the resistance to current drugs, new biological targets are needed for drug development. Aminopeptidase M1 (PfAM1), a zinc metalloprotease, has been proposed as a new drug target to fight malaria. Herein, we disclosed the structure–activity relationships of a selective family of hydroxamate PfAM1 inhibitors based on the malonic template. In particular, we performed a “fluoro-scanning” around hit 1 that enlightened the key positions of the halogen for activity. The docking of the best inhibitor 2 is consistent with in vitro results. The stability of 2 was evaluated in microsomes, in plasma, and toward glutathione. The in vivo distribution study performed with the nanomolar hydroxamate inhibitor 2 (BDM14471) revealed that it reaches its site of action. However, it fails to kill the parasite at concentrations relevant to the enzymatic inhibitory potency, suggesting that killing the parasite remains a challenge for potent and druglike catalytic-site binding PfAM1 inhibitors. In all, this study provides important insights for the design of inhibitors of PfAM1 and the validity of this target
Regioselective and Stereoselective Synthesis of Parthenolide Analogs by Acyl Nitroso-Ene Reaction and Their Biological Evaluation against Mycobacterium tuberculosis
Historically, natural products have played a major role in the development of antibiotics. Their complex chemical structures and high polarity give them advantages in the drug discovery process. In the broad range of natural products, sesquiterpene lactones are interesting compounds because of their diverse biological activities, their high-polarity, and sp 3-carbon-rich chemical structures. Parthenolide (PTL) is a natural compound isolated from Tanacetum parthenium, of the family of germacranolide-type sesquiterpene lactones. In recent years, parthenolide has been studied for its anti-inflammatory, antimigraine, and anticancer properties. Recently, PTL has shown antibacterial activities, especially against Gram-positive bacteria. However, few studies are available on the potential antitubercular activities of parthenolide and its analogs. It has been demonstrated that parthenolide's biological effects are linked to the reactivity of α-exo-methylene-γ-butyrolactone, which reacts with cysteine in targeted proteins via a Michael addition. In this work, we describe the ene reaction of acylnitroso intermediates with parthenolide leading to the regioselective and stereoselective synthesis of new derivatives and their biological evaluation. The addition of hydroxycarbamates and hydroxyureas led to original analogs with higher polarity and solubility than parthenolide. Through this synthetic route, the Michael acceptor motif was preserved and is thus believed to be involved in the selective activity against Mycobacterium tuberculosis
Rapid and Efficient Access to Novel Bio-Inspired 3-Dimensional Tricyclic SpiroLactams as Privileged Structures via Meyers’ Lactamization
International audienceThe concept of privileged structure has been used as a fruitful approach for the discovery of novel biologically active molecules. A privileged structure is defined as a semi-rigid scaffold able to display substituents in multiple spatial directions and capable of providing potent and selective ligands for different biological targets through the modification of those substituents. On average, these backbones tend to exhibit improved drug-like properties and therefore represent attractive starting points for hit-to-lead optimization programs. This article promotes the rapid, reliable, and efficient synthesis of novel, highly 3-dimensional, and easily functionalized bio-inspired tricyclic spirolactams, as well as an analysis of their drug-like properties
Drug Target Engagement using coupled Cellular Thermal Shift Assay -acoustic Reverse Phase Protein Array
International audienceIn the last 5 years, cellular thermal shift assay (CETSA), a technology based on ligand-induced changes in protein thermal stability, has been increasingly used in drug discovery to address the fundamental question of whether drug candidates engage their intended target in a biologically relevant setting. To analyze lysates from cells submitted to increasing temperature, the detection and quantification of the remaining soluble protein can be achieved using quantitative mass spectrometry, Western blotting, or AlphaScreen techniques. Still, these approaches can be time- and cell-consuming. To cope with limitations of throughput and protein amount requirements, we developed a new coupled assay combining the advantages of a nanoacoustic transfer system and reverse-phase protein array technology within CETSA experiments. We validated the technology to assess engagement of inhibitors of insulin-degrading enzyme (IDE), an enzyme involved in diabetes and Alzheimer’s disease. CETSA—acoustic reverse-phase protein array (CETSA-aRPPA) allows simultaneous analysis of many conditions and drug–target engagement with a small sample size, in a rapid, cost-effective, and biological material-saving manner
Identification of Small Inhibitory Molecules Targeting the Bfl-1 Anti-Apoptotic Protein That Alleviates Resistance to ABT-737
International audienceOne approach currently being developed in anticancer drug discovery is to search for small compounds capable of occupying and blocking the hydrophobic pocket of anti-apoptotic Bcl-2 family members necessary for interacting with pro-apoptotic proteins. Such an approach led to the discovery of several compounds, such as ABT-737 (which interacts with Bcl-2, Bcl-xl, and Bcl-w) or the latest one, ABT-199, that selectively targets Bcl-2 protein. The efficacy of those compounds is, however, limited by the expression of two other anti-apoptotic Bcl-2 members, Mcl-1 and Bfl-1. Based on the role of Bfl-1 in cancer, especially in chemoresistance associated with its overexpression in B-cell malignancies, we searched for modulators of protein-protein interaction through a high-throughput screening of a designed chemical library with relaxed drug-like properties to identify small molecules targeting Bfl-1 anti-apoptotic protein. We found two compounds that display electrophilic functions, interact with Bfl-1, inhibit Bfl-1 protective activity, and promote cell death of malignant B cells. Of particular interest, we observed a synergistic effect of those compounds with ABT-737 in Bfl-1 overexpressing lymphoma cell lines. Our results provide the basis for the development of Bfl-1 specific antagonists for antitumor therapies
Optimization of pyridylpiperazine-based inhibitors of the Escherichia coli AcrAB-TolC efflux pump
Multidrug–resistant Escherichia coli is a continuously growing worldwide public health problem, in which the well-known AcrAB-TolC tripartite RND efflux pump is a critical driver. We have previously described pyridylpiperazines as a novel class of allosteric inhibitors of E. coli AcrB which bind to a unique site in the protein transmembrane domain, allowing for the potentiation of antibiotic activity. Here, we show a rational optimization of pyridylpiperazines by modifying three specific derivatization points of the pyridine core to improve the potency and the pharmacokinetic properties of this chemical series. In particular, this work found that the introduction of a primary amine to the pyridine through ester (29, BDM91270) or oxadiazole (44, BDM91514) based linkers allowed for analogues with improved antibiotic boosting potency through AcrB inhibition. In vitro studies, using genetically engineered mutants, showed that this improvement in potency is mediated through novel interactions with distal acidic residues of the AcrB binding pocket. Of the two leads, compound 44 was found to have favorable physico-chemical properties and suitable plasma and microsomal stability. Together, this work expands the current structure-activity relationship data on pyridylpiperazine efflux pump inhibitors, and provides a promising step towards future in vivo proof of concept of pyridylpiperazines as antibiotic potentiators
Fragment-Based Optimized EthR Inhibitors with in Vivo Ethionamide Boosting Activity.
Killing more than one million people each year, tuberculosis remains the leading cause of death from a single infectious agent. The growing threat of multidrug-resistant strains of Mycobacterium tuberculosis stresses the need for alternative therapies. EthR, a mycobacterial transcriptional regulator, is involved in the control of the bioactivation of the second-line drug ethionamide. We have previously reported the discovery of in vitro nanomolar boosters of ethionamide through fragment-based approaches. In this study, we have further explored the structure-activity and structure-property relationships in this chemical family. By combining structure-based drug design and in vitro evaluation of the compounds, we identified a new oxadiazole compound as the first fragment-based ethionamide booster which proved to be active in vivo, in an acute model of tuberculosis infection.info:eu-repo/semantics/publishe
Tricyclic SpiroLactams Kill Mycobacteria In Vitro and In Vivo by Inhibiting Type II NADH Dehydrogenases
International audienceIt is critical that novel classes of antituberculosis drugs are developed to combat the increasing burden of infections by multidrug-resistant strains. To identify such a novel class of antibiotics, a chemical library of unique 3-D bioinspired molecules was explored revealing a promising, mycobacterium specific Tricyclic SpiroLactam (TriSLa) hit. Chemical optimization of the TriSLa scaffold delivered potent analogues with nanomolar activity against replicating and nonreplicating Mycobacterium tuberculosis. Characterization of isolated TriSLa-resistant mutants, and biochemical studies, found TriSLas to act as allosteric inhibitors of type II NADH dehydrogenases (Ndh-2 of the electron transport chain), resulting in an increase in bacterial NADH/NAD+ ratios and decreased ATP levels. TriSLas are chemically distinct from other inhibitors of Ndh-2 but share a dependence for fatty acids for activity. Finally, in vivo proof-of-concept studies showed TriSLas to protect zebrafish larvae from Mycobacterium marinum infection, suggesting a vulnerability of Ndh-2 inhibition in mycobacterial infections