8 research outputs found

    Six priorities to advance the science and practice of coral reef restoration worldwide

    Get PDF
    Coral reef restoration is a rapidly growing movement galvanized by the accelerating degradation of the world's tropical coral reefs. The need for concerted and collaborative action focused on the recovery of coral reef ecosystems coalesced in the creation of the Coral Restoration Consortium (CRC) in 2017. In March 2020, the CRC leadership team met for a biennial review of international coral reef restoration efforts and a discussion of perceived knowledge and implementation bottlenecks that may impair scalability and efficacy. Herein we present six priorities wherein the CRC will foster scientific advancement and collaboration to: (1) increase restoration efficiency, focusing on scale and cost-effectiveness of deployment; (2) scale up larval-based coral restoration efforts, emphasizing recruit health, growth, and survival; (3) ensure restoration of threatened coral species proceeds within a population-genetics management context; (4) support a holistic approach to coral reef ecosystem restoration; (5) develop and promote the use of standardized terms and metrics for coral reef restoration; and (6) support coral reef restoration practitioners working in diverse geographic locations. These priorities are not exhaustive nor do we imply that accomplishing these tasks alone will be sufficient to restore coral reefs globally; rather these are topics where we feel the CRC community of practice can make timely and significant contributions to facilitate the growth of coral reef restoration as a practical conservation strategy. The goal for these collective actions is to provide tangible, local-scale advancements in reef condition that offset declines resulting from local and global stressors including climate change

    Towards DCS in the UV Spectral Range for Remote Sensing of Atmospheric Trace Gases

    No full text
    The development of increasingly sensitive and robust instruments and new methodologies are essential to improve our understanding of the Earth’s climate and air pollution. In this context, Dual-Comb spectroscopy (DCS) has been successfully demonstrated as a remote laser-based instrument to probe infrared absorbing species such as greenhouse gases. We present here a study of the sensitivity of Dual-Comb spectroscopy to remotely monitor atmospheric gases focusing on molecules that absorb in the ultraviolet domain, where the most reactive molecules of the atmosphere (OH, HONO, BrO...) have their highest absorption cross-sections. We assess the achievable signal-to-noise ratio (SNR) and the corresponding minimum absorption sensitivity of DCS in the ultraviolet range. We propose a potential light source for remote sensing UV-DCS and discuss the degree of immunity of UV-DCS to atmospheric turbulences. We show that the characteristics of the currently available UV sources are compatible with the unambiguous identification of UV absorbing gases by UV-DCS

    Feasibility of dual comb spectroscopy in the UV range using a free-running, bidirectional ring titanium sapphire laser

    No full text
    We show that our developed free-running, bidirectional ring Ti:Sa laser cavity meets the requirements for Dual Comb Spectroscopy in the UV range (UV-DCS). Two counter-propagative frequency combs with slightly different repetition rate are generated in such a cavity and we show quantitatively that this repetition rate difference can be explained by the self-steepening effect. Molecular absorption lines of the O2 A-band centered around 760~nm are measured with a 1,5 GHz spectral resolution, demonstrating that the mutual coherence of the two combs allows GHz-resolution DCS measurements. Moreover, we demonstrate that the generated output peak power allows for efficient second harmonic generation (SHG), in the scope of developing laboratory and open-path UV-DCS experiments

    Where do the feral oilseed rape populations come from? A large-scale study of their possible origin in a farmland area

    No full text
    International audience1. Many cultivated species can escape from fields and colonize seminatural habitats as feral populations. Of these, feral oilseed rape is a widespread feature of field margins and roadside verges. Although considered in several studies, the general processes leading to the escape and persistence of feral oilseed rape are still poorly known. Notably, it remains unclear whether these annuals form transient populations resulting mainly from seed immigration (either from neighbouring fields or during seed transport), or whether they show real ability to persist (either through self-recruitment or seed banks). 2. We conducted a 4-year large-scale study of factors involved in the presence of feral oilseed rape populations in a typical open-field area of France. The results were subjected to statistical methods suitable for analysing large data sets, based on a regression approach. We subsequently addressed the relative contribution of the ecological processes identified as being involved in the presence of feral populations. 3. Many feral oilseed rape populations resulted from seed immigration from neighbouring fields (about 35–40% of the observed feral populations). Immigration occurred at harvest time rather than at sowing. Around 15% of such populations were attributed to immigration through seed transport. 4. The other half resulted from processes of persistence, mainly through persistent seed banks (35–40% of the observed feral populations). This was all the more unexpected because seed banks have not yet been documented on road verges (despite being frequent within fields). Local recruitment was rare, accounting for no more than 10% of the feral populations. 5. Synthesis and applications. Understanding the dynamics of feral oilseed rape populations is crucial for evaluating gene flow over an agro-ecosystem. Our results show that, while many feral populations do come from annual seed dispersal, a significant number also result from seeds stored in the soil for several years. In the current context of coexistence and management of transgenic with non-transgenic crops, feral persistence and, especially, the seed bank contribution to the dynamics of feral populations need to be considered seriously. The latter, combined with self-recruitment, indicates a high potential for the persistence of transgenes and the possible emergence of gene-stackin
    corecore