53 research outputs found

    Early childhood lung function is a stronger predictor of adolescent lung function in cystic fibrosis than early Pseudomonas aeruginosa infection

    Get PDF
    Pseudomonas aeruginosa has been suggested as a major determinant of poor pulmonary outcomes in cystic fibrosis (CF), although other factors play a role. Our objective was to investigate the association of early childhood Pseudomonas infection on differences in lung function in adolescence with CF

    Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome

    Get PDF
    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder of motile cilia. Most of the disease-causing mutations identified to date involve the heavy (DNAH5) or intermediate (DNAI1) chain dynein genes in ciliary outer dynein arms, although a few mutations have been noted in other genes. Clinical molecular genetic testing for PCD is available for the most common mutations. The respiratory manifestations of PCD (chronic bronchitis leading to bronchiectasis, chronic rhino-sinusitis and chronic otitis media) reflect impaired mucociliary clearance owing to defective axonemal structure. Ciliary ultrastructural analysis in most patients (>80%) reveals defective dynein arms, although defects in other axonemal components have also been observed. Approximately 50% of PCD patients have laterality defects (including situs inversus totalis and, less commonly, heterotaxy and congenital heart disease), reflecting dysfunction of embryological nodal cilia. Male infertility is common and reflects defects in sperm tail axonemes. Most PCD patients have a history of neonatal respiratory distress, suggesting that motile cilia play a role in fluid clearance during the transition from a fetal to neonatal lung. Ciliopathies involving sensory cilia, including autosomal dominant or recessive polycystic kidney disease, Bardet-Biedl syndrome, and Alstrom syndrome, may have chronic respiratory symptoms and even bronchiectasis suggesting clinical overlap with PCD

    Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents

    Get PDF
    Rationale: Primary ciliary dyskinesia (PCD), a genetically heterogeneous, recessive disorder of motile cilia, is associated with distinct clinical features. Diagnostic tests, including ultrastructural analysis of cilia, nasal nitric oxide measurements, and molecular testing for mutations in PCD genes, have inherent limitations

    Age of Pseudomonas aeruginosa acquisition and subsequent severity of cystic fibrosis lung disease

    Get PDF
    Rationale: Pseudomonas aeruginosa (Pa) is associated with poor pulmonary outcomes in cystic fibrosis (CF), but the association between age of Pa infection and severity of subsequent lung disease has not been thoroughly investigated. Objective: Our goal was to determine the association between age of Pa acquisition and subsequent severity of CF lung disease. Methods: Case–control study using CF Foundation Registry data of 629 ΔF508 homozygotes with severe and mild lung disease (FEV1 in the lowest and highest quartile of birth cohort, respectively). Multivariate logistic regression was performed to determine the association between age of Pa acquisition and lung disease severity. Results: Earlier age of Pa infection was strongly associated with increased odds of severe lung disease. For first and persistent Pa, adjusted odds ratios for severe lung disease were 6.5 (95% CI 3.1, 13.7; P < 0.0001) and 11.2 (5.4, 23.1; P < 0.0001), respectively, for subjects with infection before age 5 versus at ≥10 years; the association was stronger in females than males. Conclusions: Earlier Pa infection, particularly before 5 years of age, is strongly associated with severe CF lung disease later in life. This study is not designed to determine causality; Pa infection may be causing lung injury, or may be a marker of ongoing inflammation and lung damage in young children with CF

    Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65

    ZMYND10 Is Mutated in Primary Ciliary Dyskinesia and Interacts with LRRC6

    Get PDF
    Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function

    Pre-Clinical Evaluation of a Novel Nanoemulsion-Based Hepatitis B Mucosal Vaccine

    Get PDF
    Hepatitis B virus infection remains an important global health concern despite the availability of safe and effective prophylactic vaccines. Limitations to these vaccines include requirement for refrigeration and three immunizations thereby restricting use in the developing world. A new nasal hepatitis B vaccine composed of recombinant hepatitis B surface antigen (HBsAg) in a novel nanoemulsion (NE) adjuvant (HBsAg-NE) could be effective with fewer administrations.Physical characterization indicated that HBsAg-NE consists of uniform lipid droplets (349+/-17 nm) associated with HBsAg through electrostatic and hydrophobic interactions. Immunogenicity of HBsAg-NE vaccine was evaluated in mice, rats and guinea pigs. Animals immunized intranasally developed robust and sustained systemic IgG, mucosal IgA and strong antigen-specific cellular immune responses. Serum IgG reached > or = 10(6) titers and was comparable to intramuscular vaccination with alum-adjuvanted vaccine (HBsAg-Alu). Normalization showed that HBsAg-NE vaccination correlates with a protective immunity equivalent or greater than 1000 IU/ml. Th1 polarized immune response was indicated by IFN-gamma and TNF-alpha cytokine production and elevated levels of IgG(2) subclass of HBsAg-specific antibodies. The vaccine retains full immunogenicity for a year at 4 degrees C, 6 months at 25 degrees C and 6 weeks at 40 degrees C. Comprehensive pre-clinical toxicology evaluation demonstrated that HBsAg-NE vaccine is safe and well tolerated in multiple animal models.Our results suggest that needle-free nasal immunization with HBsAg-NE could be a safe and effective hepatitis B vaccine, or provide an alternative booster administration for the parenteral hepatitis B vaccines. This vaccine induces a Th1 associated cellular immunity and also may provide therapeutic benefit to patients with chronic hepatitis B infection who lack cellular immune responses to adequately control viral replication. Long-term stability of this vaccine formulation at elevated temperatures suggests a direct advantage in the field, since potential excursions from cold chain maintenance could be tolerated without a loss in therapeutic efficacy

    ZMYND10 Is Mutated in Primary Ciliary Dyskinesia and Interacts with LRRC6

    Get PDF
    Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function

    Rates of adverse and serious adverse events in children with cystic fibrosis

    No full text
    Background: Cystic fibrosis (CF) is an autosomal recessive disease characterized by chronic sinopulmonary symptoms and chronic gastrointestinal symptoms that begins in infancy. Children with CF are increasingly being included in clinical trials. In order to fully evaluate the impact of new therapies in future clinical trials, an understanding of baseline adverse event (AE) rates in children with CF is needed. To address this, we determined the rates of common AEs in pediatric patients with CF who participated in two clinical trials. Methods: We reviewed AEs for placebo recipients in the AZ0004 study and inhaled tobramycin recipients in the Early Pseudomonas Infection Control (EPIC) clinical trial. AEs were categorized based on Medical Dictionary for Regulatory Activities (MedDRA) coding classifications and pooled into common, batched AE descriptors. AE rates were estimated from negative binomial models according to age groups, severity of lung disease, and season. Results: A total of 433 children had 8,266 total AEs reported, or 18.1 (95% CI 17.0, 19.2) AEs per person per year. Respiratory AEs were the most commonly reported AEs, with a rate of 7.6 events per person-year. The total SAE rate was 0.33 per person per-year. Cough was the most commonly reported respiratory AE, with 61% of subjects reporting at least one episode of cough within 4 months. The rate ratio of any AE was higher in Spring, Fall, and Winter, compared with Summer. Conclusions: AEs occur commonly in pediatric CF clinical trial participants. Season of enrollment could affect AE rates
    • …
    corecore