33 research outputs found
Seabed biodiversity on the continental shelf of the Great Barrier Reef World Heritage Area
Final report to the Cooperative Research Centre for the Great Barrier Reef World Heritage Are
Estimating the sustainability of towed fishing-gear impacts on seabed habitats: a simple quantitative risk assessment method applicable to data-limited fisheries
1. Impacts of bottom fishing, particularly trawling and dredging, on seabed (benthic) habitats are commonly perceived to pose serious environmental risks. Quantitative ecological risk assessment can be used to evaluate actual risks and to help guide the choice of management measures needed to meet sustainability objectives. 2. We develop and apply a quantitative method for assessing the risks to benthic habitats by towed bottom-fishing gears. The method is based on a simple equation for relative benthic status (RBS), derived by solving the logistic population growth equation for the equilibrium state. Estimating RBS requires only maps of fishing intensity and habitat type — and parameters for impact and recovery rates, which may be taken from meta-analyses of multiple experimental studies of towed-gear impacts. The aggregate status of habitats in an assessed region is indicated by the distribution of RBS values for the region. The application of RBS is illustrated for a tropical shrimp-trawl fishery. 3. The status of trawled habitats and their RBS value depend on impact rate (depletion per trawl), recovery rate and exposure to trawling. In the shrimp-trawl fishery region, gravel habitat was most sensitive, and though less exposed than sand or muddy-sand, was most affected overall (regional RBS=91% relative to un-trawled RBS=100%). Muddy-sand was less sensitive, and though relatively most exposed, was less affected overall (RBS=95%). Sand was most heavily trawled but least sensitive and least affected overall (RBS=98%). Region-wide, >94% of habitat area had >80% RBS because most trawling and impacts were confined to small areas. RBS was also applied to the region's benthic invertebrate communities with similar results. 4. Conclusions. Unlike qualitative or categorical trait-based risk assessments, the RBS method provides a quantitative estimate of status relative to an unimpacted baseline, with minimal requirements for input data. It could be applied to bottom-contact fisheries worldwide, including situations where detailed data on characteristics of seabed habitats, or the abundance of seabed fauna are not available. The approach supports assessment against sustainability criteria and evaluation of alternative management strategies (e.g. closed areas, effort management, gear modifications)
The genetic architecture of the human cerebral cortex
INTRODUCTION
The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure.
RATIONALE
To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations.
RESULTS
We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness).
Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness.
To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity.
We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism.
CONCLUSION
This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function
Bottom trawl fishing footprints on the world’s continental shelves
Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from 50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing
Spatial patterns of sub-tidal seagrasses and their tissue nutrients in the Torres Strait, northern Australia: Implications for management
The distribution and nutritional profiles of sub-tidal seagrasses from the Torres Strait were surveyed and mapped across an area of 31,000 km2. Benthic sediment composition, water depth, seagrass species type and nutrients were sampled at 168 points selected in a stratified representative pattern. Eleven species of seagrass were present at 56 (33.3%) of the sample points. Halophila spinulosa, Halophila ovalis, Cymodocea serrulata and Syringodium isoetifolium were the most common species and these were nutrient profiled. Sub-tidal seagrass distribution (and associated seagrass nutrient concentrations) was generally confined to northern-central and south-western regions of the survey area (<longitude 142.60), where mean water depth was relatively shallow (approximately 13 m below MSL) and where sediments were comprised primarily muddy sand to gravelly sand. Seagrass nitrogen and starch content, the most important nutrients for marine herbivores, were significantly correlated with species and with the plant component (above or below ground). For all seagrass species, the above-ground component (shoots and leaves) possessed greater nitrogen concentrations than the below-ground component (roots and rhizomes), which possessed greater starch concentrations. S. isoetifolium had the highest total nitrogen concentrations (1.40±0.05% DW). However, it also had higher fibre concentrations (38.2±0.68% DW) relative to the other four species. H. ovalis possessed the highest starch concentrations (2.76±0.12% DW) and highest digestibility (83.24±0.66% DW) as well as the lowest fibre (27.2±0.66% DW). The high relative abundance (found at 55% of the sites that had seagrass) and nutrient quality characteristics of H. ovalis make it an important source of energy to marine herbivores that forage sub-tidally in the Torres Strait. There were two regions in Torres Strait (north-central and south-western) where sub-tidal seagrass meadows were prevalent and of relatively higher nutritional value. This spatial and nutritional information can be used by local agencies to manage and to protect the ecological, economic and cultural values of the sub-tidal seagrass ecosystems and associated fisheries of the Torres Strait
Ecological risk assessment of the East Coast Otter Trawl Fishery in the Great Barrier Reef Marine Park: Summary report
An ecological risk assessment of the East Coast Otter Trawl Fishery in the Great Barrier Reef Region was undertaken in 2010 and 2011. It assessed the risks posed by this fishery to achieving fishery-related and broader ecological objectives of both the Queensland and Australian governments, including risks to the values and integrity of the Great Barrier Reef World Heritage Area. The risks assessed included direct and indirect effects on the species caught in the fishery as well as on the structure and functioning of the ecosystem. This ecosystem-based approach included an assessment of the impacts on harvested species, bycatch, species of conservation concern, marine habitats, species assemblages and ecosystem processes. The assessment took into account current management arrangements and fishing practices at the time of the assessment. The main findings of the assessment were:
• Current risk levels from trawling activities are generally low.
• Some risks from trawling remain.
• Risks from trawling have reduced in the Great Barrier Reef Region.
• Trawl fishing effort is a key driver of ecological risk.
• Zoning has been important in reducing risks.
• Reducing identified unacceptable risks requires a range of management responses.
• The commercial fishing industry is supportive and being proactive.
• Further reductions in trawl bycatch, high compliance with rules and accurate information from ongoing risk monitoring are important.
• Trawl fishing is just one of the sources of risk to the Great Barrier Reef.This summary report is accompanied by a technical report and data report
Ecological risk assessment of the East Coast Otter Trawl Fishery in the Great Barrier Reef Marine Park: Technical report
An ecological risk assessment of the East Coast Otter Trawl Fishery in the Great Barrier Reef Region was undertaken in 2010 and 2011. It assessed the risks posed by this fishery to achieving fishery-related and broader ecological objectives of both the Queensland and Australian governments, including risks to the values and integrity of the Great Barrier Reef World Heritage Area. The risks assessed included direct and indirect effects on the species caught in the fishery as well as on the structure and functioning of the ecosystem. This ecosystem-based approach included an assessment of the impacts on harvested species, bycatch, species of conservation concern, marine habitats, species assemblages and ecosystem processes. The assessment took into account current management arrangements and fishing practices at the time of the assessment. The main findings of the assessment were:
• Current risk levels from trawling activities are generally low.
• Some risks from trawling remain.
• Risks from trawling have reduced in the Great Barrier Reef Region.
• Trawl fishing effort is a key driver of ecological risk.
• Zoning has been important in reducing risks.
• Reducing identified unacceptable risks requires a range of management responses.
• The commercial fishing industry is supportive and being proactive.
• Further reductions in trawl bycatch, high compliance with rules and accurate information from ongoing risk monitoring are important.
• Trawl fishing is just one of the sources of risk to the Great Barrier Reef
Mapping and characterisation of the inter-reefal benthic assemblages of the Torres Strait
A comprehensive survey of the benthic assemblages of the Torres Strait was conducted in order to provide critical baseline information for regional marine planning, assessing the environmental sustainability of fisheries and understanding the ecosystems of the region. Over 150 sites throughout the region were sampled with a modified prawn trawl, towed underwater video, pipe dredge and epibenthic sled. This manuscript provides a broad overview of the activities undertaken and data collected. Two thousand three hundred and seventy-two different nominal species were sampled by the trawl and sled, only 728 by both gears. The towed video was not able to provide the same level of taxonomic resolution of epibenthic taxa, but was particularly useful in areas where the seabed was too rough to be sampled. Data from the trawl, sled and video were combined to characterise the epibenthic assemblages of the region. Data from the towed video was also used to provide a characterisation of the inter-reefal benthic habitats, which was then analysed in combination with physical covariate data to examine relationships between the two. Levels of mud and gravel in the sediments, trawling effort and seabed current stress were the covariates most significantly correlated with the nature of the seabed habitats