548 research outputs found

    Sputtered gold mask for deep chemical etching of silicon

    Get PDF
    Sputtered mask resists chemical attack from acid and has adherence to withstand prolonged submergence in etch solution without lifting from silicon surface. Even under prolonged etch conditions with significant undercutting, gold mask maintained excellent adhesion to silicon surface and imperviousness to acid

    Evaluation of graft success of grapevine after incubation room by means of thermographic, electrical and mechanical techniques

    Get PDF
    Grafting is an important technique for getting good yields in plant multiplication. Understanding the success of the graft after the incubation stage is important to the evaluation of the suitable grafting for the open field (nursery). Successful grafting in vines requires the development of a functional vascular system between the scion and the rootstock. The graft compatibility and its augmentation depend upon various natural factors like environment, soil conditions and protective measures. The present study examines the capability of thermographic, mechanical and electrical techniques to assess the graft quality and success after the incubation stage. The trial was carried out at Vivai Mannone, (Petrosino, Western Sicily, 37\uc2\ub042'26.28''N - 12\uc2\ub029'09.57''E). After the different tests, various grafting combinations were planted in the nursery and followed for the vegetative season. Before the evaluation procedure was performed graft unions have been subjected to a moderate heating from ambient temperature, then the thermal transient toward ambient temperature was monitored by means of a thermal imaging camera. As far as the electrical testing procedure was concerned, a sinusoidal voltage was applied through the grafts-cuttings, and the voltage attenuation at different points at increasing distances from the source was measured by an oscilloscope. The mechanical strength of the graft undergoing a controlled rate flexural loading was monitored by a PC remote controlled digital dynamometer. Experimental results show that we were able to distinguish the successful grafting only with the thermographic test. Moreover, this technique was the only non-destructive test from which it was possible to derive quantitative parameters, useful to provide successful nursery forecast. Engraftment results detected at the nursery showed a 15% error in forecast based on the proposed thermal image method, which is a satisfactory value for a feasibility study

    The combination of DInSAR and facility damage data for the updating of slow-moving landslide inventory maps at medium scale

    Get PDF
    Abstract. Testing innovative procedures and techniques to update landslide inventory maps is a timely topic widely discussed in the scientific literature. In this regard remote sensing techniques – such as the Synthetic Aperture Radar Differential Interferometry (DInSAR) – can provide a valuable contribution to studies concerning slow-moving landslides in different geological contexts all over the world. In this paper, DInSAR data are firstly analysed via an innovative approach aimed at enhancing both the exploitation and the interpretation of remote sensing information; then, they are complemented with the results of an accurate analysis of survey-recorded damage to facilities due to slow-moving landslides. In particular, after being separately analysed to provide independent landslide movement indicators, the two datasets are combined in a DInSAR-Damage matrix which can be used to update the state of activity of slow-moving landslides. Moreover, together with the information provided by geomorphological maps, the two datasets are proven to be useful in detecting unmapped phenomena. The potentialities of the adopted procedure are tested in an area of southern Italy where slow-moving landslides are widespread and accurately mapped by using geomorphological criteria

    Performance assessment of PPP surveys with open source software using the GNSS GPS-GLONASS-Galileo constellations

    Get PDF
    In this work, the performance of the multi-GNSS (Global Navigation Satellite System) Precise Point Positioning (PPP) technique, in static mode, is analyzed. Specifically, GPS (Global Positioning System), GLONASS, and Galileo systems are considered, and quantifying the Galileo contribution is one of the main objectives. The open source software RTKLib is adopted to process the data, with precise satellite orbits and clocks from CNES (Centre National d'Etudes Spatiales) and CLS (Collecte Localisation Satellites) analysis centers for International GNSS Service (IGS). The Iono-free model is used to correct ionospheric errors, the GOT-4.7 model is used to correct tidal effects, and Differential Code Biases (DCB) are taken from the Deutsche Forschungsanstalt für Luftund Raumfahrt (DLR) center. Two different tropospheric models are tested: Saastamoinen and Estimate ZTD (Zenith Troposhperic Delay). For the proposed study, a dataset of 31 days from a permanent GNSS station, placed in Palermo (Italy), and a dataset of 10 days from a static geodetic receiver, placed nearby the station, have been collected and processed by the most used open source software in the geomatic community. The considered GNSS configurations are seven: GPS only, GLONASS only, Galileo only, GPS+GLONASS, GPS+Galileo, GLONASS+Galileo, and GPS+GLONASS+Galileo. The results show significant performance improvement of the GNSS combinations with respect to single GNSS cases

    Genetic structure and molecular variability of grapevine fanleaf virus in sicily

    Get PDF
    Grapevine fanleaf virus (GFLV) is one of the main causes of grapevine fanleaf degeneration disease (GFDD) and is present in almost all areas where grapevine is cultivated. In this work, we ascertained the presence and spread of GFLV in different commercial vineyards in four Sicilian provinces (Italy), and its genetic structure and molecular variability were studied. In detail, a total of 617 grapevine samples of 11 autochthonous grapevine cultivars were collected in 20 commercial vineyards. Preliminary screening by serological (DAS-ELISA) and molecular (RT-PCR) analyses for ArMV (arabis mosaic virus) and GFLV detection were conducted. Results obtained showed the absence of ArMV in all the samples analyzed, while 48 out of 617 samples gave positive results to GFLV, for a total of 9 out of 11 cultivars analyzed. Phylogenetic analyses carried out on the GFLV-CP gene of 18 Sicilian GFLV sequences selected in this study showed a certain degree of variability among the Sicilian isolates, suggesting a different origin, probably as a consequence of the continuous interchange of GFLV-infected propagating material with other Italian regions or viticultural areas located in other countries

    A lightweight prototype of a magnetometric system for unmanned aerial vehicles

    Get PDF
    Detection of the Earth’s magnetic field anomalies is the basis of many types of studies in the field of earth sciences and archaeology. These surveys require different ways to carry out the measures but they have in common that they can be very tiring or expensive. There are now several lightweight commercially available magnetic sensors that allow light-UAVs to be equipped to perform airborne measurements for a wide range of scenarios. In this work, the realization and functioning of an airborne magnetometer prototype were presented and discussed. Tests and measures for the validation of the experimental setup for some applications were reported. The flight sessions, appropriately programmed for different types of measurements, made it possible to evaluate the performance of this detection methodology, highlighting the advantages and drawbacks or limitations and future developments. From the results obtained it was possible to verify that the measurement system is capable of carrying out local and potentially archaeological magnetometric measurements with the necessary precautions

    Performance Assessment of PPP Surveys with Open Source Software Using the GNSS GPS\u2013GLONASS\u2013Galileo Constellations

    Get PDF
    In this work, the performance of the multi-GNSS (Global Navigation Satellite System) Precise Point Positioning (PPP) technique, in static mode, is analyzed. Specifically, GPS (Global Positioning System), GLONASS, and Galileo systems are considered, and quantifying the Galileo contribution is one of the main objectives. The open source software RTKLib is adopted to process the data, with precise satellite orbits and clocks from CNES (Centre National d\u2019Etudes Spatiales) and CLS (Collecte Localisation Satellites) analysis centers for International GNSS Service (IGS). The Iono-free model is used to correct ionospheric errors, the GOT-4.7 model is used to correct tidal effects, and Differential Code Biases (DCB) are taken from the Deutsche Forschungsanstalt f\ufcr Luftund Raumfahrt (DLR) center. Two different tropospheric models are tested: Saastamoinen and Estimate ZTD (Zenith Troposhperic Delay). For the proposed study, a dataset of 31 days from a permanent GNSS station, placed in Palermo (Italy), and a dataset of 10 days from a static geodetic receiver, placed nearby the station, have been collected and processed by the most used open source software in the geomatic community. The considered GNSS configurations are seven: GPS only, GLONASS only, Galileo only, GPS+GLONASS, GPS+Galileo, GLONASS+Galileo, and GPS+GLONASS+Galileo. The results show significant performance improvement of the GNSS combinations with respect to single GNSS cases
    • …
    corecore