37 research outputs found

    Microdialysis and CO2 sensors detect pancreatic ischemia in a porcine model

    Get PDF
    Background: Pancreatic transplantation is associated with a high rate of early postoperative graft thrombosis. If a thrombosis is detected in time, a potentially graft-saving intervention can be initiated. Current postoperative monitoring lacks tools for early detection of ischemia. The aim of this study was to investigate if microdialysis and tissue pCO2 sensors detect pancreatic ischemia and whether intraparenchymal and organ surface measurements are comparable. Methods: In 8 anaesthetized pigs, pairs of lactate monitoring microdialysis catheters and tissue pCO2 sensors were simultaneously inserted into the parenchyma and attached to the surface of the pancreas. Ischemia was induced by sequential arterial and venous occlusions of 45-minute duration, with two-hour reperfusion after each occlusion. Microdialysate was analyzed every 15 minutes. Tissue pCO2 was measured continuously. We investigated how surface and parenchymal measurements correlated and the capability of lactate and pCO2 to discriminate ischemic from non-ischemic periods. Results: Ischemia was successfully induced by arterial occlusion in 8 animals and by venous occlusion in 5. During all ischemic episodes, lactate increased with a fold change of 3.2–9.5 (range) in the parenchyma and 1.7–7.6 on the surface. Tissue pCO2 increased with a fold change of 1.6–3.5 in the parenchyma and 1.3–3.0 on the surface. Systemic lactate and pCO2 remained unchanged. The area under curve (AUC) for lactate was 0.97 (95% confidence interval (CI) 0.93–1.00) for parenchymal and 0.90 (0.83–0.97) for surface (p<0.001 for both). For pCO2 the AUC was 0.93 (0.89–0.96) for parenchymal and 0.85 (0.81–0.90) for surface (p<0.001 for both). The median correlation coefficients between parenchyma and surface were 0.90 (interquartile range (IQR) 0.77–0.95) for lactate and 0.93 (0.89–0.97) for pCO2. Conclusions: Local organ monitoring with microdialysis and tissue pCO2 sensors detect pancreatic ischemia with adequate correlation between surface and parenchymal measurements. Both techniques and locations seem feasible for further development of clinical pancreas monitoring.publishedVersio

    Thrombin Differentially Modulates the Acute Inflammatory Response to Escherichia coli and Staphylococcus aureus in Human Whole Blood

    Get PDF
    Thrombin plays a central role in thromboinflammatory responses, but its activity is blocked in the common ex vivo human whole blood models, making an ex vivo study of thrombin effects on thromboinflammatory responses unfeasible. In this study, we exploited the anticoagulant peptide Gly-Pro-Arg-Pro (GPRP) that blocks fibrin polymerization to study the effects of thrombin on acute inflammation in response to Escherichia coli and Staphylococcus aureus. Human blood was anticoagulated with either GPRP or the thrombin inhibitor lepirudin and incubated with either E. coli or S. aureus for up to 4 h at 37°C. In GPRP-anticoagulated blood, there were spontaneous elevations in thrombin levels and platelet activation, which further increased in the presence of bacteria. Complement activation and the expression of activation markers on monocytes and granulocytes increased to the same extent in both blood models in response to bacteria. Most cytokines were not elevated in response to thrombin alone, but thrombin presence substantially and heterogeneously modulated several cytokines that increased in response to bacterial incubations. Bacterial-induced releases of IL-8, MIP-1α, and MIP-1β were potentiated in the thrombin-active GPRP model, whereas the levels of IP-10, TNF, IL-6, and IL-1β were elevated in the thrombin-inactive lepirudin model. Complement C5-blockade, combined with CD14 inhibition, reduced the overall cytokine release significantly, both in thrombin-active and thrombin-inactive models. Our data support that thrombin itself marginally induces leukocyte-dependent cytokine release in this isolated human whole blood but is a significant modulator of bacteria-induced inflammation by a differential effect on cytokine patterns

    Systemic inflammation early after kidney transplantation is associated with long-term graft loss: a cohort study

    Get PDF
    Background: Early graft loss following kidney transplantation is mainly a result of acute rejection or surgical complications, while long-term kidney allograft loss is more complex. We examined the association between systemic inflammation early after kidney transplantation and long-term graft loss, as well as correlations between systemic inflammation scores and inflammatory findings in biopsies 6 weeks and 1 year after kidney transplantation. Methods: We measured 21 inflammatory biomarkers 10 weeks after transplantation in 699 patients who were transplanted between 2009 and 2012 at Oslo University Hospital, Rikshospitalet, Norway. Low-grade inflammation was assessed with predefined inflammation scores based on specific biomarkers: one overall inflammation score and five pathway-specific scores. Surveillance or indication biopsies were performed in all patients 6 weeks after transplantation. The scores were tested in Cox regression models. Results: Median follow-up time was 9.1 years (interquartile range 7.6-10.7 years). During the study period, there were 84 (12.2%) death-censored graft losses. The overall inflammation score was associated with long-term kidney graft loss both when assessed as a continuous variable (hazard ratio 1.03, 95% CI 1.01-1.06, P = 0.005) and as a categorical variable (4th quartile: hazard ratio 3.19, 95% CI 1.43-7.10, P = 0.005). In the pathway-specific analyses, fibrogenesis activity and vascular inflammation stood out. The vascular inflammation score was associated with inflammation in biopsies 6 weeks and 1 year after transplantation, while the fibrinogenesis score was associated with interstitial fibrosis and tubular atrophy. Conclusion: In conclusion, a systemic inflammatory environment early after kidney transplantation was associated with biopsy-confirmed kidney graft pathology and long-term kidney graft loss. The systemic vascular inflammation score correlated with inflammatory findings in biopsies 6 weeks and 1 year after transplantation

    Complement activation is associated with poor outcome after out-of-hospital cardiac arrest

    Get PDF
    Background - Cardiopulmonary resuscitation after cardiac arrest initiates a whole-body ischemia-reperfusion injury, which may activate the innate immune system, including the complement system. We hypothesized that complement activation and subsequent release of soluble endothelial activation markers were associated with cerebral outcome including death. Methods - Outcome was assessed at six months and defined by cerebral performance category scale (1−2; good outcome, 3−5; poor outcome including death) in 232 resuscitated out-of-hospital cardiac arrest patients. Plasma samples obtained at admission and day three were analysed for complement activation products C3bc, the soluble terminal complement complex (sC5b-9), and soluble CD14. Endothelial cell activation was measured by soluble markers syndecan-1, sE-selectin, thrombomodulin, and vascular cell adhesion molecule. Results - Forty-nine percent of the patients had good outcome. C3bc and sC5b-9 were significantly higher at admission compared to day three (p Conclusion - Complement system activation, reflected by sC5b-9 at admission, leading to subsequent endothelial cell activation, was associated with poor outcome in out-of-hospital cardiac arrest patients

    Complement Is Activated During Normothermic Machine Perfusion of Porcine and Human Discarded Kidneys

    Get PDF
    Background: The gap between demand and supply of kidneys for transplantation necessitates the use of kidneys from extended criteria donors. Transplantation of these donor kidneys is associated with inferior results, reflected by an increased risk of delayed graft function. Inferior results might be explained by the higher immunogenicity of extended criteria donor kidneys. Normothermic machine perfusion (NMP) could be used as a platform to assess the quality and function of donor kidneys. In addition, it could be useful to evaluate and possibly alter the immunological response of donor kidneys. In this study, we first evaluated whether complement was activated during NMP of porcine and human discarded kidneys. Second, we examined the relationship between complement activation and pro-inflammatory cytokines during NMP. Third, we assessed the effect of complement activation on renal function and injury during NMP of porcine kidneys. Lastly, we examined local complement C3d deposition in human renal biopsies after NMP. Methods: NMP with a blood-based perfusion was performed with both porcine and discarded human kidneys for 4 and 6 h, respectively. Perfusate samples were taken every hour to assess complement activation, pro-inflammatory cytokines and renal function. Biopsies were taken to assess histological injury and complement deposition. Results: Complement activation products C3a, C3d, and soluble C5b-9 (sC5b-9) were found in perfusate samples taken during NMP of both porcine and human kidneys. In addition, complement perfusate levels positively correlated with the cytokine perfusate levels of IL-6, IL-8, and TNF during NMP of porcine kidneys. Porcine kidneys with high sC5b-9 perfusate levels had significantly lower creatinine clearance after 4 h of NMP. In line with these findings, high complement perfusate levels were seen during NMP of human discarded kidneys. In addition, kidneys retrieved from brain-dead donors had significantly higher complement perfusate levels during NMP than kidneys retrieved from donors after circulatory death. Conclusion: Normothermic kidney machine perfusion induces complement activation in porcine and human kidneys, which is associated with the release of pro-inflammatory cytokines and in porcine kidneys with lower creatinine clearance. Complement inhibition during NMP might be a promising strategy to reduce renal graft injury and improve graft function prior to transplantation

    Synthetic Oligodeoxynucleotide CpG Motifs Activate Human Complement through Their Backbone Structure and Induce Complement-Dependent Cytokine Release

    Get PDF
    Bacterial and mitochondrial DNA, sharing an evolutionary origin, act as danger-associated molecular patterns in infectious and sterile inflammation. They both contain immunomodulatory CpG motifs. Interactions between CpG motifs and the complement system are sparsely described, and mechanisms of complement activation by CpG remain unclear. Lepirudin-anticoagulated human whole blood and plasma were incubated with increasing concentrations of three classes of synthetic CpGs: CpG-A, -B, and -C oligodeoxynucleotides and their GpC sequence controls. Complement activation products were analyzed by immunoassays. Cytokine levels were determined via 27-plex beads-based immunoassay, and CpG interactions with individual complement proteins were evaluated using magnetic beads coated with CpG-B. In whole blood and plasma, CpG-B and CpG-C (p 0.8 for all), led to time- and dose-dependent increase of soluble C5b-9, the alternative complement convertase C3bBbP, and the C3 cleavage product C3bc. GpC-A, -B, and -C changed soluble fluid-phase C5b-9, C3bBbP, and C3bc to the same extent as CpG-A, -B, and -C, indicating a DNA backbone–dependent effect. Dose-dependent CpG-B binding was found to C1q (r = 0.83; p = 0.006) and factor H (r = 0.93; p < 0.001). The stimulatory complement effect was partly preserved in C2-deficient plasma and completely preserved in MASP-2–deficient serum. CpG-B increased levels of IL-1β, IL-2, IL-6, IL-8, MCP-1, and TNF in whole blood, which were completely abolished by inhibition of C5 and C5aR1 (p < 0.05 for all). In conclusion, synthetic analogs of bacterial and mitochondrial DNA activate the complement system via the DNA backbone. We suggest that CpG-B interacts directly with classical and alternative pathway components, resulting in complement-C5aR1–dependent cytokine release

    Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients

    Get PDF
    The new SARS-CoV-2 pandemic leads to COVID-19 with respiratory failure, substantial morbidity, and significant mortality. Overactivation of the innate immune response is postulated to trigger this detrimental process. The complement system is a key player in innate immunity. Despite a few reports of local complement activation, there is a lack of evidence that the degree of systemic complement activation occurs early in COVID-19 patients, and whether this is associated with respiratory failure. This study shows that a number of complement activation products are systemically, consistently, and long-lastingly increased from admission and during the hospital stay. Notably, the terminal sC5b-9 complement complex was associated with respiratory failure. Thus, complement inhibition is an attractive therapeutic approach for treatment of COVD-19

    Lipid peroxidation in multidrug-resistant Gram-negative sepsis: translating science to the septic patient?

    Get PDF
    Multidrug-resistant Gram-negative induced sepsis poses an increasing threat to the vulnerable intensive care patient. The study by Toufekoula and colleagues reports the serum and tissue concentration of malondialdehyde (MDA), the toxic end product of lipid peroxidation, during the course of experimental and human Gram-negative sepsis. The complementary results from this dual experimental and clinical approach argue for highly compartmentalized lipid peroxidation during sepsis. Establishing a correlation between MDA concentration and survival provides valuable insights into the pathophysiology of Gram-egative sepsis. Yet, further studies are needed to understand and establish MDA as a biomarker during sepsis aggravated by organ failure

    Intraperitoneal microdialysis detects intestinal leakage earlier than hemodynamic surveillance and systemic inflammation in a pig model

    No full text
    Objective Anastomotic leakage is a common complication following large abdominal surgery, often developing to life-threatening abdominal sepsis due to late diagnosis. Currently, diagnostics rely on systemic hemodynamic and infection monitoring. We hypothesized that intraperitoneal microdialysis allows detection of peritonitis prior to changes in standard clinical parameters in a pig model. Materials and Methods We included six pigs; five underwent intraperitoneal fecal contamination, one had sham surgery for a total of 10 h. Microdialysis was established in four intraabdominal quadrants and two hepatic lobes. All pigs were hemodynamically monitored with pulmonary artery and femoral artery catheters. Blood samples were assessed for inflammatory markers, terminal complement complex (TCC), interleukin (IL)-6, IL-10, and plasminogen activator inhibitor-1 (PAI-1). Results Microdialysis showed intraperitoneal lactate increase during the first two hours after fecal contamination, which remained elevated throughout the observation time with concurrent decrease of glucose. Arterial lactate remained within reference range (<1,6mM). Systemic inflammatory markers TCC, IL-6, IL-10 and PAI-1 increased significantly after minimum four hours. Mean arterial pressure, stroke volume variation and cardiac output were not compromised the first five hours. Sham surgery did not influence any of the parameters. Conclusion Intraperitoneal fecal contamination leads to a rapid and pronounced intraperitoneal increase in lactate, decrease in glucose while pyruvate and glycerol levels remain unchanged. This distinct metabolic pattern of peritoneal inflammation can be easily detected by microdialysis. Observation of this pattern may minimize time to safe diagnosis of intestinal perforations after intraperitoneal fecal contamination

    Vitamin C, Hydrocortisone, and the Combination Thereof Significantly Inhibited Two of Nine Inflammatory Markers Induced by Escherichia Coli But Not by Staphylococcus Aureus - When Incubated in Human Whole Blood

    No full text
    Vitamin C combined with hydrocortisone is increasingly being used to treat septic patients, even though this treatment regimen is based on questionable evidence. When used, a marked effect on key players of innate immunity would be expected, as sepsis is featured by a dysregulated immune response. Here, we explored the effect of vitamin C and hydrocortisone alone and combined, in an ex vivo human whole-blood model of Escherichia coli- or Staphylococcus aureus-induced inflammation. Inflammatory markers for activation of complement (terminal C5b-9 complement complex [TCC]), granulocytes (myeloperoxidase), platelets (β-thromboglobulin), cytokines (tumor necrosis factor [TNF], IL-1β, IL6, and IL-8), and leukocytes (CD11b and oxidative burst) were quantified, by enzyme-linked immunosorbent assay, multiplex technology, and flow cytometry. In E. coli- and S. aureus-stimulated whole blood, a broad dose-titration of vitamin C and hydrocortisone alone did not lead to dose–response effects for the central innate immune mediators TCC and IL-6. Hence, the clinically relevant doses were used further. Compared to the untreated control sample, two of the nine biomarkers induced by E. coli were reduced by hydrocortisone and/or vitamin C. TNF was reduced by hydrocortisone alone (19%, P = 0.01) and by the combination (31%, P = 0.01). The oxidative burst of monocytes and granulocytes was reduced for both drugs alone and their combination, (ranging 8–19%, P < 0.05). Using S. aureus, neither of the drugs, alone nor in combination, had any effects on the nine biomarkers. In conclusion, despite the limitation of the ex vivo model, the effect of vitamin C and hydrocortisone on bacteria-induced inflammatory response in human whole blood is limited and following the clinical data
    corecore