1,219 research outputs found
Smart molecules at work-mimicking advanced logic operations
Molecular logic is an interdisciplinary research field, which has captured worldwide interest. This tutorial review gives a brief introduction into molecular logic and Boolean algebra. This serves as the basis for a discussion of the state-of-the-art and future challenges in the field. Representative examples from the most recent literature including adders/subtractors, multiplexers/demultiplexers, encoders/decoders, and sequential logic devices (keypad locks) are highlighted. Other horizons, such as the utility of molecular logic in bio-related applications, are discussed as well
The agent architecture InteRRaP : concept and application
One of the basic questions of research in Distributed Artificial Intelligence (DAI) is how agents have to be structured and organized, and what functionalities they need in order to be able to act and to interact in a dynamic environment. To cope with this question is the purpose of models and architectures for autonomous and intelligent agents. In the first part of this report, InteRRaP, an agent architecture for multi-agent systems is presented. The basic idea is to combine the use of patterns of behaviour with planning facilities in order to be able to exploit the advantages both of the reactive, behaviour-based and of the deliberate, plan-based paradigm. Patterns of behaviour allow an agent to react flexibly to changes in its environment. What is considered necessary for the performance of more sophisticated tasks is the ability of devising plans deliberately. A further important feature of the model is that it explicitly represents knowledge and strategies for cooperation. This makes it suitable for describing high-level interaction among autonomous agents. In the second part of the report, the loading-dock domain is presented, which has been the first application the InteRRaP agent model has been tested with. An automated loading-dock is described where the agent society consists of forklifts which have to load and unload trucks in a shared, dynamic environment
Acute and Chronic Effects of Green Oat (Avena sativa) Extract on Cognitive Function and Mood during a Laboratory Stressor in Healthy Adults: A Randomised, Double-Blind, Placebo-Controlled Study in Healthy Humans
Green oat (Avena sativa) extracts contain several groups of potentially psychoactive phytochemicals. Previous research has demonstrated improvements in cognitive function following a single dose of these extracts, but not following chronic supplementation. Additionally, whilst green oat extracts contain phytochemicals that may improve mood or protect against stress, for instance species-specific triterpene saponins, to date this possibility has not been examined. The current study investigated the effects of a single dose and four weeks of administration of a novel, Avena sativa herbal extract (cognitaven®) on cognitive function and mood, and changes in psychological state during a laboratory stressor. The study adopted a dose-ranging, double-blind, randomised, parallel groups design in which 132 healthy males and females (35 to 65 years) received either 430 mg, 860 mg, 1290 mg green oat extract or placebo for 29 days. Assessments of cognitive function, mood and changes in psychological state during a laboratory stressor (Observed Multitasking Stressor) were undertaken pre-dose and at 2 h and 4 h post-dose on the first (Day 1) and last days (Day 29) of supplementation. The results showed that both a single dose of 1290 mg and, to a greater extent, supplementation for four weeks with both 430 mg and 1290 mg green oat extract resulted in significantly improved performance on a computerised version of the Corsi Blocks working memory task and a multitasking task (verbal serial subtractions and computerised tracking) in comparison to placebo. After four weeks, the highest dose also decreased the physiological response to the stressor in terms of electrodermal activity. There were no treatment-related effects on mood. These results confirm the acute cognitive effects of Avena sativa extracts and are the first to demonstrate that chronic supplementation can benefit cognitive function and modulate the physiological response to a stressor
Динаміка збудження автоіонізаційних станів в атомі рубідію
З використанням методу електронної спектроскопії, нами досліджені функції збудження (ФЗ) деяких дублетних та квартетних автоіонізаційних станів (АІС), які представлені на рис.1. Похибка при визначенні ефективних перерізів збудження не перевищувала 30%
On the representation of temporal knowledge
The growing interest in an adequate modelling of time in Artificial Intelligence has given rise to the research discipline of Temporal Reasoning (TR). Due to different views, different approaches towards TR such as PL1, modal logics or Allen\u27s intervall logic have been investigated. It was realized at an early stage that each of this approaches has some strong points whereas it suffers from certain drawbacks. Thus recently, a number of research activities have emerged aiming at a combination of the classical paradigms for representing time. In the first part of this paper, we present an overview of the most important approaches to the integration of temporal knowledge into logic programming. In the second part, we present the CRONOLOG temporal logic programming language which has been developed to cover the quintessence of the approaches presented before. The third part of the paper describes TRAM, which it is an extension of CRONOLOG to a temporal knowledge representation system. Using TRAM it is possible to represent knowledge depending on time and to reason about this knowledge. TRAM has been conceptually based on a combination of modal logics with Allen\u27s interval logic. We present the Extended Modal Logics (EML) which establishes the theoretical framework for TRAM. We define an operational semantics and a horizontal compilation scheme for TRAM
An acido- and photochromic molecular device that mimics triode action
© The Royal Society of Chemistry 2016. The photo-controlled shift of pH titration curves, describing the acidochromic behaviour of a spiropyran switch network, was harnessed for the realisation of a molecular triode. The intricate network can be correctly interpreted with respect to the pH dependence of the main involved species
A supramolecular keypad lock
The reversible photoswitching between an anthracene derivative and its [4+4] dimer, using the template effect of the CB8 macrocycle, was demonstrated. This example of supramolecular chemistry in water was harnessed to demonstrate the operation of a keypad lock device that is driven by means of light and chemicals as inputs
Cooperative transportation scheduling : an application domain for DAI
A multiagent approach to designing the transportation domain is presented. The MARS system is described which models cooperative order scheduling within a society of shipping companies. We argue why Distributed Artificial Intelligence (DAI) offers suitable tools to deal with the hard problems in this domain. We present three important instances for DAI techniques that proved useful in the transportation application: cooperation among the agents, task decomposition and task allocation, and decentralised planning. An extension of the contract net protocol for task decomposition and task allocation is presented; we show that it can be used to obtain good initial solutions for complex resource allocation problems. By introducing global information based upon auction protocols, this initial solution can be improved significantly. We demonstrate that the auction mechanism used for schedule optimisation can also be used for implementing dynamic replanning. Experimental results are provided evaluating the performance of different scheduling strategies
Unifying control in a layered agent architecture
In this paper, we set up a unifying perspective of the individual control layers of the architecture InteRRaP for autonomous interacting agents. InteRRaP is a pragmatic approach to designing complex dynamic agent societies, e.g. for robotics Müller & Pischel and cooperative scheduling applications Fischer et al.94. It is based on three general functions describing how the actions an agent commits to are derived from its perception and from its mental model: belief revision and abstraction, situation recognition and goal activation, and planning and scheduling. It is argued that each InteRRaP control layer - the behaviour-based layer, the local planning layer, and the cooperative planning layer - can be described by a combination of different instantiations of these control functions. The basic structure of a control layer is defined. The individual functions and their implementation in the different layers are outlined. We demonstrate various options for the design of interacting agents within this framework by means of an interacting robots application. The performance of different agent types in a multiagent environment is empirically evaluated by a series of experiments
An All-Photonic Molecule-Based Parity Generator/Checker for Error Detection in Data Transmission
The function of a parity generator/checker, which is an essential operation for detecting errors in data transmission, has been realized with multiphotochromic switches by taking advantage of a neuron-like fluorescence response and reversible light-induced transformations between the implicated isomers
- …
