26 research outputs found

    LIPs, orogens and supercontinents: The ongoing saga

    Get PDF
    Of nine large age peaks in zircon and LIP time series <2300 Ma (2150, 1850, 1450, 1400, 1050, 800, 600, 250 and 100 Ma), only four are geographically widespread (1850, 1400, 800 and 250 Ma). These peaks occur both before and after the onset of the supercontinent cycle, and during both assembly and breakup phases of supercontinents. During supercontinent breakup, LIP activity is followed by ocean-basin opening in some areas, but not in other areas. This suggests that mantle plumes are not necessary for ocean-basin opening, and that LIPs should not be used to predict the timing and location of supercontinent breakups. LIP events may be produced directly by mantle plumes or indirectly from subduction regimes that have inherited mantle-cycle signatures from plume activity. A combination of variable plume event intensity and multiple plume cyclicities best explains differences in LIP age peak amplitudes and irregularities. Peaks in orogen frequency at 1850, 1050, 600 Ma, which approximately coincide with major zircon and LIP age peaks, correspond to onsets of supercontinent assembly, and age peaks at 1450, 250 and 100 Ma correspond to supercontinent stasis or breakup. Although collisional orogens are more frequent during supercontinent assemblies, accretionary orogens have no preference for either breakup or assembly phases of supercontinents. A sparsity of orogens during Rodinia assembly may be related to incomplete breakup of Nuna as well as to the fact that some continental cratons never accreted to Rodinia. There are three groups of passive margins, each group showing a decrease in duration with time: Group 1 with onsets at 2.2–2.0 Ga correspond to the breakup of Neoarchean supercratons; Group 2 with onsets at 1.5–1.2 Ga correspond to the breakup of Nuna; and Group 3 with onsets at 1.5–0.1 Ga not corresponding to any particular supercontinent breakup. New paleogeographic reconstructions of supercontinents indicate that in the last 2 Gyr average angular plate speeds have not changed or have decreased with time, whereas the number of orogens has increased. A possible explanation for decreasing or steady plate speed is an increasing proportion of continental crust on plates as juvenile continental crust continued to be added in post-Archean accretionary orogens. Cycles of mantle events are now well established at 90 and 400 Myr. Significant age peaks in orogen frequency, average plate speed, LIPs and detrital zircons may be part of a 400-Myr mantle cycle, and major age peaks in the cycle occur near the onset of supercontinent assemblies. The 400-Myr cycle may have begun with a “big bang” at the 2700 Ma, although the LIP age spectrum suggests the cycle may go back to at least 3850 Ma. Large age peaks at 1850, 1050, 600 and 250 Ma may be related to slab avalanches from the mantle transition zone that occur in response to supercontinent breakups

    Paleomagnetic Evidence for a Paleoproterozoic Rotational Assembly of the North Australian Craton in the Leadup to Supercontinent Formation

    No full text
    The kinematics of the Paleoproterozoic assembly of Earth's first supercontinent, Nuna, are still debated. We present new paleomagnetic results from two Paleoproterozoic rock formations in the North Australia Craton (NAC) that exemplify cratonic assembly processes in the leadup to Nuna formation. Our new paleomagnetic data for the 1,825 Ma Plum Tree Creek Volcanics of the proto-NAC and the layered mafic-ultramafic 1,855 Ma Toby intrusion of the Kimberley Craton suggest their amalgamation just prior to ca. 1.8 Ga through a scissor-like ocean closure to form the NAC, in accord with geological records. Comparing these new results with extant poles from Australia and other major cratons suggests similarly minor relative plate motions between ca. 1.9 and 1.65 Ga during craton and supercontinent formation. A global reconstruction suggests that these events could be related to a major slab-suction event leading to Nuna formation

    Paleomagnetic Constraints on the Duration of The Australia-Laurentia Connection in the Core of the Nuna Supercontinent

    No full text
    The Australia-Laurentia connection in the Paleoproterozoic to Mesoproterozoic supercontinent Nuna is thought to have initiated by ca. 1.6 Ga when both continents were locked in a proto-SWEAT (southwestern U.S.–East Antarctic) configuration. However, the longevity of that configuration is poorly constrained. Here, we present a new high-quality paleomagnetic pole from the ca. 1.3 Ga Derim Derim sills of northern Australia that suggests Australia and Laurentia were in the same configuration at that time. This new paleopole also supports a connection between Australia and North China and, in conjunction with previously reported data from all continents, indicates that the breakup of Nuna largely occurred between ca. 1.3 and 1.2 Ga

    A New Ectasian Event of Basitic Magmatism in the Southern Siberian Craton

    No full text
    Abstract: On the basis of U–Pb dating of zircon and baddeleyite from gabbro–dolerite of the Goloustnaya dyke swarm (southern margin of the Siberian Craton), the age of basites was established as 1338.0 ± 2.9 Ma. It is shown that the basite intrusions of close ages from the Goloustnaya and Listvyanka areas (southern Siberian Craton) and Victoria Island (northern Laurentia, Barking Dog complex) could have been formed under the influence of the same mantle plume and belong to the same Large Igneous Province of Ectasian (Middle Mesoproterozoic) age

    U-Pb detrital zircon geochronology and provenance of Neoproterozoic sedimentary rocks in southern Siberia: New insights into breakup of Rodinia and opening of Paleo-Asian Ocean

    No full text
    © 2018 International Association for Gondwana Research We present the synthesis of new data on detrital zircon geochronology of the Neoproterozoic strata of the southern part of the Siberian craton as well as a comprehensive analysis of previously published stratigraphic, sedimentological and geochronological (LA-ICP-MS) data obtained for key sections in this area that allows us to trace the process of birth and early stages of development of the Paleo-Asian Ocean (PAO). Before the break-up of Rodinia and opening of PAO, Tonian – Cryogenian intracontinental sedimentary basin existed between southern Siberia and northern Laurentia. The detachment of the southern flank of the Siberian craton from northern Laurentia and opening of the PAO between these cratons took place in Cryogenian. The detrital zircon ages from lower parts of Neoproterozoic successions suggest the Siberian craton as the sole provenance area right after the opening of the PAO. The age constraints on the lower parts of the studied Neoproterozoic successions, which are based on correlation of their tillite horizons with the Marinoan glaciation, suggest the late Cryogenian age for these sedimentary rocks. A clear change in the age spectra of detrital zircons from “unimodal” (Early Precambrian only) in older sedimentary rocks to “bimodal” (Early Precambrian as well as Neoproterozoic) in younger sequences of the studied successions marks the next stage of the PAO evolution. The abundance of youngest (630–610 Ma) detrital zircons in the upper parts of the studied sequences reflects a shrinkage of the oceanic basin as a result of the convergence of the craton with the microcontinents and island arcs within the Paleo-Asian Ocean. We suggest that a passive oceanic margin along the southern margin of the Siberian craton has been transformed into a series of foreland basins at ~610 Ma

    Using the isotope dating of endocontact hybrid rocks for the age determination of mafic rocks (southern Siberian craton)

    No full text
    Geological observations and petrological and geochemical criteria are used to detect hybrid rocks at the endocontact of a dolerite dike. The hybrid rocks were produced when the material of a mafic intrusion mixed with a felsic melt. The latter was produced by the melting of the metamorphic rocks making up the Goloustnaya basement inlier of the Siberian craton, under the thermal effect of the intruded dike. Two age groups of zircon have been identified in the hybrid rock by SHRIMP analysis. The Paleoproterozoic age of inherited zircon (1902, 1864, 1859, and 1855 Ma) reflects the contribution of ancient sources to the hybrid-rock composition. The young, primary-magmatic, zircon grains, produced by melting at the endocontact of the mafic intrusion (494 ± 5 Ma), are coeval with the hybrid rocks, and their age indicates when the mafic rocks intruded the metamorphic framework. Dikes of close age, with similar geochemical characteristics, are present on the vast southern margin of the Siberian craton-from Goloustnaya to Biryusa salients. © 2013
    corecore